
Expressive Image Generation and Editing with Rich Text

Songwei Ge, Taesung Park, Jun-Yan Zhu, Jia-Bin Huang

Abstract
Plain text has become a prevalent interface for text-based image synthesis and editing. Its limited customization
options, however, hinder users from accurately describing desired outputs. For example, plain text makes it hard to
specify continuous quantities, such as the precise RGB color value or importance of each word. Creating detailed
text prompts for complex scenes is tedious for humans to write and challenging for text encoders to interpret.
Furthermore, describing a reference concept or texture in plain text is non-trivial. To address these challenges,
we propose using a rich-text editor supporting formats such as font style, size, color, texture fill, footnote, and
embedded image. We extract each word’s attributes from rich text to enable local style control, explicit token
reweighting, precise color rendering, and detailed region synthesis with reference concepts or texture. We achieve
these capabilities through a region-based diffusion process. We first obtain each word’s mask that characterizes
the region guided by the word. For each region, we enforce its text attributes by creating customized prompts,
applying guidance within the region, and maintaining its fidelity against plain-text generations or input images
through region-based injections. We present various examples of image generation and editing from rich text and
demonstrate that our method outperforms strong baselines with quantitative evaluations.

Keywords: Text-to-image generation, diffusion model, image editing, generative models

1 Introduction
The development of large-scale text-to-image gener-
ative models (Ramesh et al., 2021; Saharia et al.,
2022; Rombach et al., 2022; Kang et al., 2023)
has propelled image generation to an unprecedented
era. The great flexibility of these large-scale models
further offers users powerful control of the genera-
tion through visual cues (Balaji et al., 2022; Gafni
et al., 2022; Zhang and Agrawala, 2023) and textual
inputs (Brooks et al., 2023; Hertz et al., 2023). With-
out exception, existing studies use plain text encoded
by a pretrained language model to guide the genera-
tion. However, in our daily lives, it is rare to use only
plain text when working on text-based tasks such as
writing blogs or editing essays. Instead, a rich text
editor (Colorado State University, 2012; Witten et al.,
2009) is the more popular choice, providing versa-
tile formatting options for writing and editing text. In
this paper, we seek to introduce accessible and precise
textual control from rich text editors to text-to-image
synthesis.

Rich text editors offer unique solutions for incor-
porating conditional information separate from the
text. For example, using the font color, one can indi-
cate an arbitrary color. In contrast, describing the
precise color with plain text proves more challenging
as general text encoders do not understand RGB or
Hex triplets, and many color names, such as ‘olive’
and ‘orange’, have ambiguous meanings. This font
color information can be used to define the color of
generated objects. For example, in Figure 1, a specific
yellow can be selected to instruct the generation of a
marble statue with that exact color.

Beyond providing precise color information, vari-
ous font formats make it simple to augment the word-
level information. For example, reweighting token
influence (Hertz et al., 2023) can be implemented
using the font size, which is challenging to achieve
with existing visual or textual interfaces. Nevertheless,
rich text editors offer more options than font size –
similar to how font style distinguishes the styles of
individual text elements, we propose using it to cap-
ture the artistic style of specific regions. Furthermore,
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A pizza with pineapples, pepperonis, and 
mushrooms on the top, 4k, photorealism.

A marble statue of a wolf's head and shoulder, 
surrounded by colorful flowers

A nightstand1 next to a bed with pillows on it. Gray 
wall2 bedroom.

1A nightstand with some books. 2Accent shelf with plants on the gray wall.

A close-up of a cat1 riding a scooter. Tropical 
trees in the background.

1A cat wearing sunglasses and has a bandana around its neck.

A night sky filled with stars above a turbulent 
sea with giant waves.

Styles: Van Gogh, Hokusai. 

A young woman1 sits at a table in a beautiful, lush 
garden, reading a book on the table.

Style: Claude Monet 1Girl with a pearl earring by Johannes Vermeer.

Fig. 1: Plain text (left image) vs. Rich text (right image) Our method allows a user to describe an image using a
rich text editor that supports various text attributes like font family, size, color, and footnote. Given these text
attributes extracted from rich-text prompts, our method enables precise control of text-to-image synthesis
regarding colors, styles, and object details compared to plain text.

embedded images provide extra information in visual
format. We utilize such images as reference concepts
to guide the generated objects. This intuitive design
enables personalized/customized generation.

But how can we use rich text? A straightforward
implementation is to convert a rich-text prompt with
detailed attributes into lengthy plain text and feed it
directly into existing methods (Rombach et al., 2022;
Hertz et al., 2023; Brooks et al., 2023). Unfortunately,
these methods struggle to synthesize images corre-
sponding to lengthy text prompts involving multiple
objects with distinct visual attributes, as noted in a
recent study (Chefer et al., 2023). They often mix
styles and colors, applying a uniform style to the entire
image. Furthermore, the lengthy prompt introduces
extra difficulty for text encoders to interpret accurate
information, making generating intricate details more
demanding.

To address these challenges, our insight is to
decompose a rich-text prompt into two components
(1) a short plain-text prompt (without formatting) and
(2) multiple region-specific prompts that include text
attributes, as shown in Figure 2. First, we obtain the
self- and cross-attention maps using a vanilla denois-
ing process with the short plain-text prompt to asso-
ciate each word with a specific region. Second, we
create a prompt for each region using the attributes
derived from rich-text prompt. For example, we use

“mountain in the style of Ukiyo-e” as the prompt
for the region corresponding to the word “mountain”
with the attribute “font style: Ukiyo-e”. For RGB font
colors that cannot be converted to the prompts, we iter-
atively update the region with region-based guidance
to match the target color. We apply a separate denois-
ing process for each region and fuse the predicted
noises to get the final update. During this process,
regions associated with the tokens that do not have any
formats are supposed to look the same as the plain-text
results. Also, the overall shape of the objects should
stay unchanged in cases such as only the color is
changed. To this end, we propose to use region-based
injection approaches.

We demonstrate qualitatively and quantitatively
that our method generates more precise color, distinct
styles, and accurate details compared to plain text-
based methods. We conduct a thorough quantitative
evaluation by building a rich-text benchmark by col-
lecting a diverse set of rich-text prompts with font
color, style, and footnotes.

A preliminary version of this work was published
earlier in (Ge et al., 2023). In this paper, we extend our
work and summarize the core differences below.

• We build a benchmark for evaluating the task
of rich text-to-image generation. This includes a
quantitative evaluation of image generation with
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complex prompts. The benchmark presents new
challenges for future research.

• We develop two novel applications, leverag-
ing additional rich-text font attributes: 1) using
embedded images to guide the concept being
generated in the image and 2) enabling texture
fill to guide the texture being rendered in the
object.

• We apply rich texts for editing real images.
By leveraging diffusion inversion techniques and
segmentation methods, we show rich text-based
editing allows precise control of the editing
results.

2 Related Work

Text-to-image models. Text-to-image systems aim
to synthesize realistic images according to descrip-
tions (Zhu et al., 2007; Mansimov et al., 2016). Fueled
by the large-scale text-image datasets (Schuhmann
et al., 2022; Byeon et al., 2022), various training and
inference techniques (Ho et al., 2020; Song et al.,
2021; Ho et al., 2022; Ho and Salimans, 2021), and
scalibility (Ramesh et al., 2022), significant progress
has been made in text-to-image generation using dif-
fusion models (Balaji et al., 2022; Ramesh et al., 2022;
Nichol et al., 2022; Saharia et al., 2022; Gafni et al.,
2022), autoregressive models (Ramesh et al., 2021; Yu
et al., 2022; Chang et al., 2023; Ding et al., 2022),
GANs (Sauer et al., 2023; Kang et al., 2023), and their
hybrids (Rombach et al., 2022). Our work focuses
on making these models more accessible and provid-
ing precise controls. In contrast to existing work that
uses plain text, we use a rich text editor with various
formatting options.

Controllable image synthesis with diffusion mod-
els. A wide range of image generation and edit-
ing applications are achieved through either fine-
tuning pre-trained diffusion models (Ruiz et al., 2023;
Kumari et al., 2023; Zhang and Agrawala, 2023; Avra-
hami et al., 2023; Wu et al., 2023; Kawar et al., 2023;
Ma et al., 2023; Li et al., 2023) or modifying the
denoising process (Meng et al., 2022; Choi et al.,
2021; Hertz et al., 2023; Parmar et al., 2023; Bansal
et al., 2023; Chefer et al., 2023; Avrahami et al., 2022;
Balaji et al., 2022; Jiménez, 2023; Bar-Tal et al., 2023;
Sarukkai et al., 2023; Zhang et al., 2023; Cao et al.,
2023; Phung et al., 2024; Xiao et al., 2023; Feng et al.,
2023). For example, Prompt-to-prompt (Hertz et al.,
2023) uses attention maps from the original prompt

to guide the spatial structure of the target prompt.
Although these methods can be applied to some rich-
text-to-image applications, the results often fall short,
as shown in Section 4. Concurrent with our work,
Mixture-of-diffusion (Jiménez, 2023) and MultiDif-
fusion (Bar-Tal et al., 2023) propose merging multi-
ple diffusion-denoising processes in different image
regions through linear blending. Instead of relying
on user-provided regions, we automatically compute
regions of selected tokens using attention maps. Gra-
dient (Ho et al., 2022) and Universal (Bansal et al.,
2023) guidance control the generation by optimiz-
ing the denoised generation at each time step. We
apply them to precise color generation by designing
an objective on the target region to be optimized.

Layout-controlled image generation. Spatial lay-
outs serve as a meaningful intermediate representa-
tion, bridging the gap between abstract scene descrip-
tions and pixel-level image synthesis. Generating
images according to layout has been a long-standing
and compelling problem (Park et al., 2019; Johnson
et al., 2018; Isola et al., 2017; Couairon et al., 2023;
Park et al., 2023; Feng et al., 2024; Qu et al., 2023).
Park et al. (2023) proposed Gaussian-categorical
diffusion process to extend these frameworks by
jointly generating images and semantic layouts, fur-
ther enriching the generative model landscape. Coua-
iron et al. (2023) proposed ZestGuide, a zero-shot
method that uses cross-attention-derived segmentation
maps for layout-guided image generation. Similarly,
Qu et al. (2023) introduced LayoutLLM-T2I to use
Large Language Models (LLMs) for layout planning.
They propose feedback-based sampler and relation-
aware object interaction modules to enhance the qual-
ity of complex-scene image generation. Feng et al.
(2024) presented LayoutGPT, leveraging in-context
learning with structured CSS-style prompts to gen-
erate layouts for both 2D images and 3D scenes.
A key component in our rich-text-to-image genera-
tion framework is the region-based diffusion process.
Unlike these prior works, where the goal is to produce
layout-guided image generation, we aim to extract the
layout from the diffusion model generation process
and synthesize images with rich-text.

Attention in diffusion models. The attention mech-
anism has been used in various diffusion-based appli-
cations such as view synthesis (Liu et al., 2023; Tseng
et al., 2023; Watson et al., 2022), image editing (Hertz
et al., 2023; Chefer et al., 2023; Patashnik et al., 2023;
Parmar et al., 2023; Kumari et al., 2023), and video
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"church ":{
     "color": "#FF9900"
}, 
"snowy mountain range in the distance":{
     "image": “MT_Fuji.jpg"
 },
"a ", " surrounded by a beautiful ", " a ": {
},
"garden":{
     "footnote": “a garden filled with colorful wildflowers",
}, 

Rich text editor

Rich text 

a church surrounded by a beautiful garden, 

a snowy mountain range in the distance

Plain text

“church” “snowy 
mountain … ”

“garden” Other tokens

Token maps     :

(a) Plain text to image

(b) Rich text to image

Vanilla Diffusion

Region-based 
Diffusion

Noised Sample Feature Maps Self-Attention Maps

Cross-Attention Maps

Fig. 2: Rich-text-to-image framework. First, the plain-text prompt is processed by a diffusion model to collect
self- and cross-attention maps, noised generation, and residual feature maps at certain steps. The token maps of
the input prompt are constructed by first creating a segmentation using the self-attention maps and then labeling
each segment using the cross-attention maps. Then the rich texts are processed as JSON to provide attributes for
each token span. The resulting token maps and attributes are used to guide our region-based control. We inject the
self-attention maps, noised generation, and feature maps to improve fidelity to the plain-text generation.

editing (Liu et al., 2023; QI et al., 2023; Ceylan et al.,
2023; Ma et al., 2023). We also leverage the spatial
structure in self-attention maps and alignment infor-
mation between texts and regions in cross-attention
maps for rich-text-to-image generation.

Rich text modeling and application. Exploiting
information beyond the intrinsic meanings of the texts
has been previously studied (Meng et al., 2019; Sun
et al., 2021; Xu et al., 2020; Li et al., 2022). For exam-
ple, visual information, such as underlining and bold
type, have also been extracted for various document
understanding tasks (Xu et al., 2020; Li et al., 2022).
To our knowledge, we are the first to leverage rich text
information for text-to-image synthesis.

Image stylization and colorization. Style trans-
fer (Gatys et al., 2016; Zhu et al., 2017; Luan et al.,
2017) and Colorization (Reinhard et al., 2001; Tai
et al., 2005; Xu et al., 2013; Levin et al., 2004; Zhang
et al., 2016, 2017) for editing real images have also
been extensively studied. In contrast, our work focuses
on local style and precise color control for generating
images from text-to-image models.

Image generation with complex prompts. To accu-
rately generate the image the users expect, one option
is to provide more detailed prompts. Several studies

have thus focused on generating images based on com-
plex prompts (Betker et al., 2023; Wang et al., 2024;
Wu et al., 2023). DALL-E 3 (Betker et al., 2023) finds
that training on highly descriptive synthetic captions
reliably improves the alignment between text prompts
and generation results. ParaDiffusion (Wu et al., 2023)
utilizes pretrained LLM with a larger context window
to process complex prompts. Instead, we decouple the
complex prompts into multiple detailed prompts that
describe local regions. Similar to ours, InstanceDiffu-
sion (Wang et al., 2024) also studies detailed prompts
for individual regions, while ours does not require
layout as part of the user input.

Text-to-image generation benchmark. As text-to-
image models develop rapidly, many works have paid
attention to the evaluation of these models (Bakr et al.,
2023; Hu et al., 2023; Huang et al., 2024; Patel et al.,
2024; Zhao et al., 2024). While these benchmarks
focus on different aspects of text-to-image genera-
tion such as the text-image alignment (Hu et al.,
2023; Bakr et al., 2023) and concept learning (Kumari
et al., 2023; Patel et al., 2024), we aim at building
a benchmark for evaluating rich text to image gener-
ation on several applications, including precise color
rendering, local style control, and complex prompt
alignment.
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𝑥𝑡 𝑥𝑡−1 𝑥𝑡−2 𝑥0

Image

Self-
Attention

Cross-
Attention

Average Spectral 
clustering

Average
Labeling

“church”

“garden”

“mountain”

Fig. 3: Token map creation. We average the collected self- and cross-attention maps to create token maps that
indicate the layout of the input prompt. The segmentation is first constructed by spectral clustering using the self-
attention maps. Then, the averaged cross-attention maps are adopted to label each segment using annotated tokens.

3 Rich Text to Image Generation
From writing messages on communication apps,
designing websites (Sahuguet and Azavant, 1999), to
collaboratively editing a document (Litt et al., 2022;
Ignat et al., 2021), a rich text editor is often the pri-
mary interface to edit texts on digital devices. Such
rich-text formats allow complementary information to
be added to the plain texts. Nonetheless, only plain
text has been used in text-to-image generation. To
use formatting options in rich-text editors for more
precise control over the black-box generation pro-
cess (Agrawala, 2023), we first introduce a problem
setting called rich-text-to-image generation and edit-
ing. We then discuss our approach to this task.

3.1 Problem Setting
As shown in Figure 2, a rich text editor supports
various formatting options, such as font styles, font
size, color, and more. We leverage these text attributes
as extra information to increase control of text-to-
image generation. We interpret the rich-text prompt
as JSON, where each text element consists of a span
of tokens ei (e.g., ‘church’) and attributes ai describ-
ing the span (e.g., ‘color:#FF9900’). Note that some
tokens eU may not have any attributes, and some
other tokens may have multiple attributes. Using these
annotated prompts, we explore several applications:
1) local style control using font style, 2) precise color
control using font color, 3) texture rendering with tex-
ture fill, 4) detailed region description using footnotes,
5) concept guidance through embedded images, and 6)
explicit token reweighting with font sizes.

Font style is used to apply a specific artistic style
as
i , e.g., as

i = ‘Ukiyo-e’, to the synthesis of the span
of tokens ei. For instance, in Figure 1, we apply the
Ukiyo-e painting style to the ocean waves and the style
of Van Gogh to the sky, enabling the application of
localized artistic styles. This task presents a unique
challenge for existing text-to-image models, as there
are limited training images featuring multiple artistic
styles. Consequently, existing models tend to generate
a uniform mixed style across the entire image rather
than distinct local styles.

Font color indicates a specific color of the mod-
ified text span. Given the prompt “a red toy”, the
existing text-to-image models generate toys in various
shades of red, such as light red, crimson, or maroon.
The color attribute provides a way for specifying a
precise color in the RGB color space, denoted as ac

i .
For example, to generate a toy in fire brick red, one can
change the font color to “a toy”, where the word “toy”
is associated with the attribute ac

i = [178, 34, 34].
However, as shown in the experiment section, the
pretrained text encoder cannot interpret the RGB val-
ues and have difficulty understanding obscure color
names, such as lime and orange.

Texture fill is another way to stylize text, similar
to font color, which is often known as solid fill in
the rich-text editor. Such flexible text-fill formatting
further supports finer-grained control of the object’s
appearance using more concise information beyond
text prompts. Specifically, we use at

i to denote the tar-
get texture that one wants to render for certain objects.
In practice, we use a texture image as the reference.

Footnote provides supplementary explanations of
the target span without hindering readability with
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“church”

“garden”

" church ":{
     "color": "#FF9900"
 }, 

an orange 
church

𝑥𝑡

𝜖𝜃
Noise predictor 𝜖𝑡,0

"garden":{
    "footnote": “a garden 
filled with colorful 
wildflowers",
}, 

a garden filled 
with colorful 
wildflowers

𝑥𝑡

𝜖𝜃
Noise predictor 𝜖𝑡,𝑁

𝑥

𝑥𝑡

𝑥𝑡−1

RGB: 
(255, 153, 0) Guidance Loss 𝐿𝑥𝑡

Gradient 𝜕𝐿
𝜕𝑥𝑡

“church”

Injection

Injection

𝑥𝑡−1
plain background

"snowy mountain…":{

    "image": 

}, 

infor ms fuji office 
mighty contained  
appr oves pr oposed a  

   ultimatefan

𝑥𝑡

𝜖𝜃
Noise predictor 𝜖𝑡,1

Injection

“mountain”

Fig. 4: Region-based diffusion. We fulfill the guidance specified by the rich-text attributes through separate
diffusion processes. Depending on the functionality, the attributes are either interpreted as a region-based
guidance target (e.g. re-coloring the church), or as a textual input to the diffusion UNet (e.g. handling the
embedded image describing the snowy mountain). The self-attention maps and feature maps extracted from the
plain-text generation process are injected to help preserve the structure. The predicted noise ϵt,ei , weighted by
the token map, and the guidance gradient ∂L

∂xt
are used to denoise and update the previous generation xt to xt−1.

The noised plain text generation xplain
t is blended with the current generation to preserve the exact content in

those regions of the unformatted tokens.

lengthy sentences. Writing detailed descriptions of
complex scenes is tedious work, and it inevitably cre-
ates lengthy prompts (Karpathy and Fei-Fei, 2015;
Johnson et al., 2016). Additionally, existing text-to-
image models are prone to ignoring some objects
when multiple objects are present (Chefer et al., 2023),
especially with long prompts. Moreover, excess tokens
are discarded when the prompt’s length surpasses
the text encoder’s maximum length, e.g., 77 tokens
for CLIP models (Radford et al., 2021). We aim to
mitigate these issues using a footnote string af

i .
Font size can indicate an object’s importance,

quantity, or size. We use a scalar aw
i to denote the

weight of each token.
Embedded images provide visual cues comple-

mentary to the textual information. Such visual infor-
mation is more accurate than texts when describing the
objects on the identity and low-level details. For exam-
ple, by connecting the word “cat” in “a cat chasing
a butterfly” to a specific cat image, one can generate
an image of their cat chasing a butterfly. Generating
customized images of the reference concepts has been
an active research question (Kumari et al., 2023; Gal

et al., 2023; Chen et al., 2023; Li et al., 2023; Jia et al.,
2023; Chen et al., 2023; Gal et al., 2023; Shi et al.,
2023; Chen et al., 2023; Xiao et al., 2023). In con-
trast to free-form generation in prior work, we aim
to preserve the original image structure in plain-text
generation while synthesizing customized concepts.

3.2 Method
To utilize rich text annotations, our method consists
of two steps, as shown in Figure 2. First, we compute
the spatial layouts of individual token spans. Second,
we use a new region-based diffusion to render each
region’s attributes into a globally coherent image.
Step 1. Token maps for spatial layout. Several
works (Tang et al., 2022; Ma et al., 2023; Balaji et al.,
2022; Hertz et al., 2023; Chefer et al., 2023; Patashnik
et al., 2023; Tumanyan et al., 2023) have discovered
that the attention maps in the self- and cross-attention
layers of the diffusion UNet characterize the spatial
layout of the generation. As shown in Figure 3, we
develop a method to precisely extract the layout of the
diffusion model generation. Our intuition is that the

6



overall structure of image is determined by the plain
text prompt while the rich-text formatting offers more
informative descriptions of the local regions.

We use the plain text as the input to the diffu-
sion model and collect self-attention maps of size
32× 32× 32× 32 across different heads, layers, and
time steps. We take the average across all the extracted
maps and reshape the result into 1024 × 1024. Note
that the value at ith row and jth column of the map
indicates the probability of pixel i attending to pixel
j. We average the map with its transpose to convert it
to a symmetric matrix. It is used as a similarity map
to perform spectral clustering (Shi and Malik, 2000;
Von Luxburg, 2007) and obtain the binary segmenta-
tion maps M̂ of size K × 32 × 32, where K is the
number of segments.

To associate each segment with a textual span, we
also extract cross-attention maps for each token wj :

mj =
exp(sj)∑
k exp(sk)

, (1)

where sj is the attention score. We first interpolate
each cross-attention map mj to the same resolution
as M̂ of 32 × 32. Similar to the processing steps of
the self-attention maps, we compute the mean across
heads, layers, and time steps to get the averaged map
m̂j . We associate each segment with a texture span ei
following Patashnik et al. (2023):

Mei
= {M̂k |

∣∣∣∣ M̂k ·
m̂j −min(m̂j)

max(m̂j)−min(m̂j)

∣∣∣∣
1

> ϵ,

(2)
∀j s.t. wj ∈ ei}, (3)

where ϵ is a hyperparameter that controls the label-
ing threshold, that is, the segment M̂k is assigned to
the span ei if the normalized attention score of any
tokens in this span is higher than ϵ. We associate the
segments unassigned to any formatted spans with the
unformatted tokens eU . Finally, we obtain the token
map in Figure 2 as below:

Mei =

∑
M̂j∈Mei

M̂j∑
i

∑
M̂j∈Mei

M̂j

(4)

Step 2. Region-based denoising and guidance. As
shown in Figure 2, given the text attributes and token
maps, we divide the overall image synthesis into sev-
eral region-based denoising and guidance processes to

incorporate each attribute, similar to an ensemble of
diffusion models (Kumari et al., 2023; Bar-Tal et al.,
2023). More specificially, given the span ei, the region
defined by its token map Mei , and the attribute ai, the
predicted noise ϵt for noised generation xt at time step
t is

ϵt =
∑
i

Mei · ϵt,ei =
∑
i

Mei ·D(xt, f(ei,ai), t),

(5)
where D is the pretrained diffusion model, and
f(ei,ai) is a plain text representation derived from
text span ei and attributes ai using the following
process:

1. Initially, we set f(ei,ai) = ei.
2. If an embedded image is available, we convert

it into a footnote af
i using the gradient-based

discrete optimization (Wen et al., 2023).
3. If footnote af

i is available, we set f(ei,ai) =

af
i .

4. The style as
i is appended if it exists. f(ei,ai) =

f(ei,ai) + ‘in the style of’ + as
i .

5. The closest color name (string) of font color âc
i

from a predefined set C is prepended. f(ei,ai) =
âc
i + f(ei,ai). For example, âc

i = ‘brown’ for
RGB color ac

i = [136,68,20].
6. If a texture description ât

i is provided together
with the texture image ac

i , we prepend the texture
description: f(ei,ai) = ât

i + f(ei,ai).
We use f(ei,ai) as the original plain text prompt of
Step 1 for the unformatted tokens eU . This helps us
generate a coherent image, especially around region
boundaries.

Guidance. By default, we use classifier-free guid-
ance (Ho and Salimans, 2022) for each region to better
match the prompt f(ei,ai). In addition, if the font
color or texture fill is specified, to exploit the appear-
ance information further, we apply gradient guid-
ance (Ho et al., 2022; Dhariwal and Nichol; Bansal
et al., 2023) on the current clean image prediction:

x̂0 =
xt −

√
1− ᾱtϵt√
ᾱt

, (6)

where xt is the noisy image at time step t, and ᾱt is the
coefficient defined by noise scheduling strategy (Ho
et al., 2020). When font color is specified, we com-
pute an MSE loss Lcolor between the average color of
x̂ weighted by the token map Mei

and the RGB triplet
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Fig. 5: Qualitative comparison on precise color generation. We show images generated by Prompt-to-Prompt
(Hertz et al., 2023), InstructPix2Pix (Brooks et al., 2023), and our method using prompts with font colors. Our
method generates precise colors according to either color names or RGB values. Both baselines generate
plausible but inaccurate colors given color names, while neither understands the color defined by RGB values.
InstructPix2Pix tends to apply the color globally, even outside the target object.

ac
i . The gradient is calculated below,

dLcolor

dxt
=

d∥
∑

p (Mei
· x̂0)/

∑
p Mei

− ac
i∥22√

ᾱtdx̂0
,

(7)
where the summation is over all pixels p.

When texture fill is selected, we adopt a region-
based perceptual loss (Johnson et al., 2016), Lperceptual,
to optimize the region specified by token map Mei

to
align with the guided texture:

Lperceptual(x,y) =
∑
j

∥GVGG
j (x)−GVGG

j (y)∥22,

(8)
where GVGG

j (·) computes the Gram matrix of neu-
ral features extracted from a VGG model at layer j.
Specifically, we mask the image with Mei

and fill
the hole with the texture image to ensure that the loss
is only computed on the token region. The guidance
gradient is then computed as:

dLtexture

dxt
=

dLperceptual(Mei
· xt + (1−Mei

) · ati,ati)√
ᾱtdx̂0

,

(9)
We denote the total guidance loss as L =

λtextureLtexture + λcolorLtexture, where λtexture and λcolor
are hyperparameters to control the strength of the
guidance. We use λcolor = 1 and λtexture = 0.2
unless denoted otherwise.We then update xt with the

following equation:

xt ← xt − λ ·Mei
· dL
dxt

, (10)

Token reweighting with font size. Last, to re-weight
the impact of the token wj according to the font size
aw
j , we modify its cross-attention maps mj . However,

instead of applying direct multiplication as in Prompt-
to-Prompt (Hertz et al., 2023) where

∑
j a

w
j mj ̸= 1,

we find that it is critical to preserve the probabil-
ity property of mj . We thus propose the following
reweighting approach:

m̂j =
aw
j exp(sj)∑

k a
w
k exp(sk)

. (11)

We can compute the token map (Equation 4) and
predict the noise (Equation 5) with the reweighted
attention map.

Preserve the fidelity against plain-text genera-
tion. Although our region-based method naturally
maintains the layout, there is no guarantee that the
details and shape of the objects are retained when
no rich-text attributes or only the color is speci-
fied, as shown in Figure 15. To this end, we follow
Plug-and-Play (Tumanyan et al., 2023) to inject the
self-attention maps and the residual features extracted
from the plain-text generation process when t > Tpnp
to improve the structure fidelity. In addition, for the
regions associated with the unformatted tokens eU ,

8



A night sky filled with stars (1st Region: Van Gogh) above a turbulent sea with giant waves (2nd Region: Ukiyo-e)

Prompt-to-Prompt InstructPix2Pix-para InstructPix2Pix-seqOurs

The awe-inspiring sky and sea (1st Region: J.M.W. Turner) by a coast with flowers and grasses in spring (2nd Region: Monet).

Fig. 6: Qualitative comparison on style control. We show images generated by Prompt-to-Prompt,
InstructPix2Pix, and our method using prompts with multiple styles. Only our method can generate distinct styles
for both regions.
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Fig. 7: Quantitative evaluation of local style
control. We report the CLIP similarity between each
stylized region and its region prompt. Our method
achieves the best stylization.

stronger content preservation is desired. Therefore, at
certain t = Tblend, we blend the noised sample xplain

t

based on the plain text into those regions:

xt ←MeU
· xplain

t + (1−MeU
) · xt (12)

4 Experimental Results

4.1 Experimental Setups

Implementation details. We use Stable Diffusion
V1-5 (Rombach et al., 2022) for our main compar-
isons, as most baselines are built on this model. We
also demonstrate the generalizability of the method
using SDXL (Podell et al., 2024), which achieves
better-quality and higher-resolution generation results
over SD. To create the token maps, we use the
cross-attention layers in all blocks, excluding the first
encoder and last decoder blocks, as the attention maps
in these high-resolution layers are often noisy. We
discard the maps at the initial denoising steps with
T > 750. We use K = 15, ϵ = 0.3, Tpnp =
0.3, Tblend = 0.3, and report the results averaged from
three random seeds for all quantitative experiments.
More details, such as the running time, can be found
in Appendix B. We notice that most hyperparameters
we use in SD work well for SDXL. Notably, SDXL
additionally conditions the generation on the pooled
CLIP feature (Radford et al., 2021) by using adap-
tive normalization. For rich-text generation, we use
region-specific prompts to compute these features for
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A yellow, sports car parking in front of a wall.

A chef wearing an apron in a kitchen.A cute cat sitting besides a cake, plain background.

A Gothic church in a sunset with a beautiful landscape.

Fig. 8: Qualitative results on texture transfer. We show images our method generates with certain textures
specified in the rich-text prompt by texture infill. We present the plain-text generation, reference texture image, and
rich-text generation for each example. Note that we resize texture images to a similar size for display. Our method
can faithfully align with the texture guidance while organically combining it with the rest of the generated image.
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Fig. 9: Quantitaive evaluation on precise color
generation. Distance against target color is reported
(lower is better). Our method consistently
outperforms baselines.

region-based diffusion process. In addition, we use the
residual features from the first layer of the decoder for
the Plug-and-Play method.

Baselines. For font color and style, we quantita-
tively compare our method with two strong baselines,
Prompt-to-Prompt (Hertz et al., 2023) and Instruct-
Pix2Pix (Brooks et al., 2023). When two instruc-
tions exist for each image in our font style exper-
iments, we apply them in parallel (InstructPix2Pix-
para) and sequential manners (InstructPix2Pix-seq).
More details can be found in Appendix B. We also
perform a human evaluation on these two methods in
Appendix Table 1. For re-weighting token importance,
we visually compare with Prompt-to-Prompt (Hertz
et al., 2023) and two heuristic methods, repeating

and adding parentheses. For complex scene generation
with footnotes, we also compare with Attend-and-
Excite (Chefer et al., 2023).

4.2 Rich-Text Benchmark
Most existing studies on text-to-image genera-
tion (Ramesh et al., 2021; Saharia et al., 2022; Hertz
et al., 2023) are only evaluated on the relatively short
prompts (Bakr et al., 2023; Hu et al., 2023) with a sin-
gle image style or simple colors. To evaluate the model
capacity on the challenging rich-text applications,
including local style rending, precise color synthesis,
and complex prompt alignment, we build a benchmark
with pairs of rich-text prompts and their equivalent
plain-text prompts focusing on these tasks. For each
task, we also design the pipeline to automatically
assess the critical aspects of generation quality. More
details about the construction process is explained in
Appendix B.

Footnote. To understand how well a model performs
when a lengthy text prompt is given, we collect a
set of long prompts using the GPT-4 model (OpenAI,
2023). We follow a two-step procedure for prompt-
ing the language model. First, we ask the model to
generate global descriptions for a scene and then gen-
erate detailed captions for the objects that appear in
the scene. Such a format also makes it easy to convert
to rich-text prompts with footnotes. Second, we cre-
ate the full plain and rich text prompts based on these
global and local descriptions.
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Stable Diffusion (Plain-Text) Stable Diffusion (Full-Text) Ours

Attend-and-Excite Prompt-to-Prompt InstructPix2Pix

A coffee table1 sits in front of a sofa2 on a cozy carpet. A painting3 on the wall. cinematic lighting, trending on artstation, 4k, hyperrealistic, focused, extreme details.
1A rustic wooden coffee table adorned with scented candles and many books.                2A plush sofa with a soft blanket and colorful pillows on it.
3A painting of wheat field with a cottage in the distance, close up shot, trending on artstation, HD, calm, complimentary color, realistic lighting, by Albert Bierstadt, Frederic Church.

Fig. 10: Qualitative comparison on detailed description generation. We show images generated by
Attend-and-Excite, Prompt-to-Prompt, InstructPix2Pix, and our method using complex prompts. Our method is
the only one that can generate all the details faithfully.

In the first step, to control the quality of the
collected prompts, we manually create a few hier-
archical descriptions as the in-context examples. In
addition, we find that the model can hallucinate in
the local object descriptions by describing the objects
not shown in the scene. Also, some descriptions can
include non-visual features like the flavor of the food.
Therefore, after collecting the results from GPT-4, we
manually filter and edit the low-quality text prompts.

We collect 100 prompts in total. In the second
step, we use GPT-4 to produce single, long, plain-text
prompts. We also create scripts to produce rich-text
prompts from these hierarchical prompts. We pro-
vide the prompt template we used for both stages in
Appendix B. We summarize the statistics of the plain-
text prompts in Table 1. Note that the average length
of the collected prompts is around 4× longer than the

prior arts and closer to the concurrent work (Wu et al.,
2023).

To evaluate the alignment between the gener-
ated images and the lengthy text prompts, we follow
the process in TIFA (Hu et al., 2023) to sample
question-answer pairs according to the scene and
object prompts using language models. For example,
given the scene prompt “a nightstand next to a bed in
the bedroom,” the question-and-answer pair could be
“Q: Is there a bed? A: Yes.” Through this process, we
collect 2921 such pairs. To evaluate a generated image,
either a VQA model or human annotators can answer
the question based on the generated image and check
whether it is consistent with the ground truth answer.

We manually modify the questions based on the
object prompts to reflect that the object is part of the
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Prompt-to-Prompt
A pizza with pineapples, pepperonis, 

and mushrooms, mushrooms, 
mushrooms, mushrooms, mushrooms

A pizza with pineapples, pepperonis, 
and (((((mushrooms)))))

Ours: A pizza with pineapples, 
pepperonis, and mushrooms

Fig. 11: Qualitative comparison on token reweighting. We show images generated by our method and
Prompt-to-Prompt using token weight of 13 for ‘mushrooms’. Prompt-to-Prompt suffers from artifacts due to the
large weight. Heuristic methods like repeating and parenthesis do not work well.

A kid wearing a backpack riding a bike in a street with fallen leaves. A dog playing guitar on a boat, sailing in the ocean.

Fig. 12: Qualitative results on customized concept generation. We underline the modified concepts in the
prompts and display the reference image on the top right of each rich-text generation result. Our method is able to
synthesize the image with the object according to the reference image without changing the overall structure.

scene. For example, for the object prompt “a night-
stand with some books,” we modify the question “Are
there books?” to “Are there books on the nightstand?”
We manually review and drop low-quality, irrelevant,
or repeated questions. For example, we drop the pair
“Q: What is in the bedroom? A: A bed.” since “a night-
stand” or other reasonable objects could be the correct
answer. Instead, we prefer to ask the more concrete
question, “Is there a bed in the bedroom?” After the
manual processing, we obtain 1974 question-answer
pairs in total.

Font color. We divide colors into three categories to
evaluate a method’s capacity to understand and gen-
erate a specific color. The Common color category
contains 17 standard names, such as “red”, “yellow”,
and “pink”. The HTML color names are selected
from the web color names1 used for website design,
such as “sky blue”, “lime green”, and “violet pur-
ple”. The RGB color category contains 50 randomly
sampled RGB triplets to be used as “color of RGB

1https://simple.wikipedia.org/wiki/Web color

values [128, 128, 128]”. To create a complete prompt,
we use 12 objects exhibiting different colors, such as
“flower”, “gem”, and “house”. This gives us a total of
1, 200 prompts. We evaluate color accuracy by com-
puting the mean L2 distance between the region and
target RGB values. We also compute the minimal L2
distance as sometimes the object should contain other
colors for fidelity, e.g., the “black tires” of a “yellow
car”.

Font style. We come up with prompts featuring
two objects and styles to evaluate the ability to gen-
erate accurate local styles. We create combinations
using 7 popular styles and 10 objects, resulting in
420 prompts. To automatically evaluate the perfor-
mance, we compute CLIP scores (Radford et al., 2021)
for each local region to evaluate the stylization qual-
ity. Specifically, for each generated image, we mask
it by the token maps of each object and attach the
masked output to a black background. Then, we com-
pute the CLIP score using the region-specific prompt.
For example, for the prompt “a lighthouse (Cyber-
punk) among the turbulent waves (Ukiyo-e)”, the local
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https://simple.wikipedia.org/wiki/Web_color


Table 1: The statistics of text prompts collected in the previous benchmarks or adopted in the previous studies.

Benchmark or paper Number of words Number of tokens
Avg Max Min Avg Max Min

DALLE (Ramesh et al., 2021) 15.8 36 6 18.35 42 9
Prompt-to-Prompt (Hertz et al., 2023) 7.43 12 2 8.56 14 3
DrawBench (Saharia et al., 2022) 11.37 51 1 14.03 57 3
HRS Bench (Bakr et al., 2023) 12.85 36 1 14.94 42 3
TIFA (Hu et al., 2023) 11.46 67 3 11.63 82 3
ParaImage-Big (Wu et al., 2023) 132.9 - - - - -
ParaImage-Small (Wu et al., 2023) 70.6 - - - - -
Ours 46.56 68 19 57.68 90 22

Table 2: Quantitative evaluation of long prompt
generation. We report the percentage of the time that
the VQA output is aligned with the answer to a
question regarding the generation. Our method
consistently improves Stable Diffusion models.

Stable Diffusion Stable Diffusion XL

Plain-text generation 72.86± 1.13 79.05± 0.41
Rich-text generation 73.24± 1.00 81.08± 0.66

CLIP score of the lighthouse region is measured by
comparing its similarity with the prompt “lighthouse
in the style of cyberpunk.” In this example, we refer
to “lighthouse” as the first region and “waves” as the
second region.

4.3 Quantitative Comparison
We report the local CLIP scores computed by a ViT-
B/32 model in Figure 7. Our method achieves the best
overall CLIP score compared to the two baselines.
This demonstrates the advantage of our region-based
diffusion method for localized stylization. To further
understand the each model’s capacity for generating
multiple styles, we report the metric on each region.
Prompt-to-Prompt and InstructPix2Pix-para achieve
a decent score on the 1st Region, i.e., the region
first occurs in the sentence. However, they often fail
to fulfill the style in the 2nd Region. We conjec-
ture that the Stable Diffusion model tends to gener-
ate a uniform style for the entire image, which can
be attributed to single-style training images. Further-
more, InstructPix2Pix-seq performs the worst in 2nd

Region. This is because the first instruction contains

no information about the second region, and the sec-
ond region’s content could be compromised when we
apply the first instruction.

We show quantitative results of precise color gen-
eration in Figure 9. The distance of HTML color is
generally the lowest for baseline methods, as they pro-
vide the most interpretable textual information for text
encoders. This aligns with our expectation that the dif-
fusion model can handle simple color names, whereas
they struggle to handle the RGB triplet. Our rich-text-
to-image generation method consistently improves on
the three categories and two metrics over the baselines.

In Table 2, we follow TIFA (Hu et al., 2023)
to evaluate the long prompt generation using either
Stable Diffusion or Stable Diffusion XL as the base
models. Specifically, we generate 5 images for each
text prompt using different random seeds and use
the mplug-large model (Li et al., 2022) to generate
the answers to each benchmark question. We report
how often the generated answers are consistent with
the benchmark answers by averaging across differ-
ent seeds. We also report the standard deviation. Our
rich-text method consistently improves the generation
quality with different base models when a lengthy
prompt is given. Moreover, we find that the Sta-
ble Diffusion XL significantly outperforms the Stable
Diffusion model.

4.4 Visual Comparison

Precise color generation. We show qualitative com-
parison on precise color generation in Figure 5.
InstructPix2Pix (Brooks et al., 2023) is prone to create
global color effects rather than accurate local con-
trol. For example, in the flower results, both the vase
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Make the cabin orange.
Turn the wildflowers into style 
Claude Monet, Impressionism.
Make the lake crystal-clear, 
blueish, glistening in the 
sunlight.
…… 

A rustic orange cabin sits on 
the edge of a giant, crystal-
clear, blueish lake. The lake is 
glistening in the sunlight. 
Wildflowers in the style of 
Claude Monet, Impressionism 
dot the meadow around the 
cabin and lake. 

A rustic cabin sits on the 
edge of a giant lake. 
Wildflowers dot the 
meadow around the cabin 
and lake. 

A rustic cabin sits on 
the edge of a giant lake. 
Wildflowers dot the 
meadow around the cabin 
and lake. 

A rustic cabin sits on 
the edge of a giant lake1. 
Wildflowers dot the meadow 
around the cabin and lake.
 
Style: Claude Monet, impressionism

A rustic cabin sits on 
the edge of a giant lake1. 
Wildflowers dot the meadow 
around the cabin and lake.
 
Style: Claude Monet, impressionism
1A crystal-clear, blueish lake, glistening 
in the sunlight.

Stable Diffusion Stable Diffusion (full text) InstructPix2Pix

Ours Ours Ours

Fig. 13: Our workflow. (top left) A user begins with an initial plain-text prompt and wishes to refine the scene by
specifying the color, details, and styles. (top center) Naively inputting the whole description in plain text does not
work. (top right) InstructPix2Pix (Brooks et al., 2023) fails to make accurate editing. (bottom) Our method
supports precise refinement with region-constrained diffusion processes. Moreover, our framework can naturally
be integrated into a rich text editor, enabling a tight, streamlined UI.

and background change to the target colors. Prompt-
to-Prompt (Hertz et al., 2023) provides more pre-
cise control over the target region. However, neither
Prompt-to-Prompt nor InstructPix2Pix can generate
precise colors. In contrast, our method can generate
precise colors for all categories and prompts.

Local style generation. Figure 6 visually com-
pares local style generation. When applying
InstructPix2Pix-seq, the style in the first instruction
dominates the entire image and undermines the sec-
ond region. Figure 13 in the Appendix shows this
cannot be fully resolved using different hyperpa-
rameters of classifier-free guidance. Similar to our
observation in the quantitative evaluation, our base-
lines tend to generate the image in a globally uniform
style instead of distinct local styles for each region.
In contrast, our method synthesizes the correct styles
for both regions. One may suggest independently
applying baselines with two stylization processes
and composing the results using token maps. How-
ever, Figure 12 (Appendix) shows that such methods
generate artifacts on the region boundaries.

Texture-guidaded generation. The results in
Figure 8 demonstrate our method’s ability to seam-
lessly incorporate texture information specified by a
reference image into image generation results while
preserving the other information of the textual descrip-
tions, such as the overall shape and geometry. For
instance, the generated cake aligns with the visual
style of the salmon in the texture guidance while

preserving the overall shape and structure of the orig-
inal cake. The other objects, such as the cat, remain
unchanged. Also, the chef’s apron exhibits a clear
artistic style inspired by the reference while retaining
the size and shape of the original apron in plain-text
generation.

Complex scene generation. Figure 10 shows com-
parisons on complex scene generation. Attend-and-
Excite (Chefer et al., 2023) uses the tokens missing
in the full-text generation result as input to fix the
missing objects, like the coffee table and carpet in the
living room example. However, it still fails to generate
all the details correctly, e.g., the books, the painting,
and the blanket. Prompt-to-Prompt (Hertz et al., 2023)
and InstructPix2Pix (Brooks et al., 2023) can edit the
painting accordingly, but many objects, like the col-
orful pillows and stuff on the table, are still missing.
In contrast, our method faithfully synthesizes all these
details described in the target region.

Token importance control. Figure 11 shows the
qualitative comparison on token reweighting. When
using a large weight for ‘mushroom,’ Prompt-to-
Prompt generates clear artifacts as it modifies the
attention probabilities to be unbounded and cre-
ates out-of-distribution intermediate features. Heuris-
tic methods fail when adding more mushrooms, while
our method generates more mushrooms and preserves
the quality. More results of different font sizes and
target tokens are shown in Figures 23 - 25 in the
Appendix.

14



Fig. 14: Ablation of token maps. Using solely
cross-attention maps to create token maps leads to
inaccurate segmentations, causing the background to
be colored in an undesired way.

Customized concept generation. We show
reference-driven image generation in Figure 12.
Our method can generate the customized concepts
specified by the embedded images without making
undesired changes to the plain-text generation. For
example, only the backpack design is modified for the
example on the left, and the dog’s breeds are changed
(instead of the pose) on the right.

More visual generation results. We show more
rich-text generation results using Stable Diffsuion XL
model (Podell et al., 2024) with a focus on multiple
rich-text attributes in Figure 16. We show that these
rich-text formatting options provide great flexibility
in customizing the text-to-image generation process
using our region-based diffusion and guidance. Our
region-based injection also helps preserve the fidelity
with respect to plain-text results. For example, the
font color supports accurate controlling the color of
dressing and looking, font style allows freely render-
ing artistic styles in a certain region, embedded image
insert personal reference image into the generation
seamlessly, and so on. In addition, combining these
options can further boost the controlibitly. For exam-
ple, with the font color specifying the color of the hat,
a footnote can be further used to describe the type of
hat. Also, powered by the improved generation capac-
ity of SDXL, we also show the generation of large
and complex scenes, such as a snowy forest and a city
square, with many visual elements indicated by the
rich-text attributes. In conclusion, these results high-
light that our method and design choices are agnostic
to the base model and can be readily generalized to
different pre-trained diffusion models.

Fig. 15: Ablation of injection method. We show
images generated based on plain text and rich text
with or without injection methods. Injecting features
and noised samples help preserve the structure of the
church and unformatted token regions.

Real image editing. We also explore using rich text as
an alternative to plain text in real image editing. Given
a real image, we manually caption the image with
text descriptions and use the off-the-shelf diffusion
inversion methods to obtain the noise latent that recon-
structs the image (Huberman-Spiegelglas et al., 2023;
Wu and De la Torre, 2022; Ju et al., 2024). We find that
our method is generally robust to different inversion
methods. In the experiments, we use the edit-friendly
DDPM (Huberman-Spiegelglas et al., 2023) as our
default inversion method. Unlike the image genera-
tion setting, the source image is already available here.
We thus use the state-of-the-art grounded segmenta-
tion methods (Kirillov et al., 2023; Liu et al., 2023;
Ren et al., 2024) to produce the token maps. This is
generally more robust than the cross-attention-based
methods since the manually created text prompts for
inversion may not accurately describe the image as the
model expects.

We adopt the same configuration we used in
image generation, including the region-based guid-
ance denoising and injection methods. We compare
with existing editing methods, including inversion and
editing with plain text (Huberman-Spiegelglas et al.,
2023), InstructPix2Pix (Brooks et al., 2023), and Plug-
and-Play (Tumanyan et al., 2023).

As shown in Figure 17, the rich text allows edit-
ing the regions’ color, style, and content with accu-
rate controllability. Specifically, all existing methods
struggle with preserving the details in the non-edited
regions. For example, in the Van Gogh portrait exam-
ple, all the baselines change the styles of areas other
than the hat. Instead, our injection method and the
region information in the token masks greatly improve
the fidelity in these regions. In addition, as we allow
direct usage of the color RGB information, we edit the
dress color (in the example of the second row) more
accurately.
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A cozy cabin1 nestled in a snowy forest2, and a snowman3 stands 
in the yard.
1A charming wooden cabin with Christmas decoration, warm light 
coming from windows. 
2Towering evergreen trees covered in a thick layer of pristine snow.
3Cute snowman wearing a carrot nose, coal eyes, and a colorful scarf.

A bustling city square1 with a large bronze statue2.
Skyscrapers3 tower above.
1City square paved with cobblestones, hosting a farmers' market with 
colorful stalls.
2A majestic statue of a city founder holding a scroll, pigeons perched 
on his outstretched arm.
3Modern glass and steel skyscrapers reflecting the midday sun, 
bustling with corporate activity.

A cat eating food1 in a bowl on the table in the kitchen.
1The round dry cat food.

A close-up photo of a corgi wearing a hat1, beach and ocean
in the background.
Style: Impressionism.
1A lady’s hat.

A male Lycan wolf wearing jet trench coat playing a guitar in a 
dark forest1. high fantasy, digital painting, concept art.
1A forest with dead woods and flying ravens
Style: Steam Punk.

A wizard holding a wand1 and wearing a robe and wizard hat.
1A wooden wand made of tree branch and a gem.

A watercolor painting of the detective duck wearing a sheriff 
uniform and holding a vintage handgun.
1A dark green, washed jacket.
2A beautiful flower bouquet made of pink roses.

A girl with long hair sitting in a cafe, by a table with 
coffee1 on it.
1Ceramic cup with intricate design, a dance of earthy browns and 
delicate gold. Dark, velvety latte in it.

Fig. 16: More rich-text guided image generation results. We show more visual generation results by SDXL
using rich texts with multiple text attributes, with a highlight on generating complex scenes.
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A man in suit1 with a green apple on his face.
1A  colorful Hawaiian shirt

Close-up of a man wearing a helmet. Snow1 in the background.
1A  wheat field

A portrait of a man with a beard wearing a hat
Styles: Picasso, cubism

A stylish woman in suit and a dress walking down a 
Tokyo street, high quality.

Input image Inversion + Plain text InstructPix2Pix Plug-and-Play Inversion + Rich text (Ours)

Fig. 17: Image editing with rich text. We show that with the off-the-shelf inversion techniques, our methods
easily slot in as an alternative to plain-text editing. Using rich text with our region-based guidance and diffusion
allows more precise control in editing real images than existing methods.

Interactive editing. In Figure 13, we showcase
a sample workflow to illustrate our method’s inter-
active strength and editing capacity over Instruct-
Pix2Pix (Brooks et al., 2023).

4.5 Ablation Study

Generating token maps solely from cross-attention.
The other straightforward way to create token maps is

to use cross-attention maps directly. To ablate this, we
first take the average of cross-attention maps across
heads, layers, and time steps and then take the maxi-
mum across tokens. Finally, we apply softmax across
all the spans to normalize the token maps. However, as
shown by the example in Figure 14, since the prompt
has no correspondence with the background, the token
map of “shirt” also covers partial background regions.
Note that simple thresholding is ineffective as some
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regions still have high values, e.g., the right shoul-
der. As a result, the target color bleeds into the
background. Our methods obtain more accurate token
maps and, consequently, more precise colorization.

Ablation of the injection methods. To demonstrate
the effectiveness of our injection method, we compare
image generation with and without it in Figure 15.
In the font color example, we show that applying the
injection effectively preserves the shape and details of
the target church and the structure of the sunset in the
background. In the footnote example, we show that
the injection keeps the look of the black door and the
color of the floor.

5 Discussion and Limitations
In this paper, we have expanded the controllabil-
ity of text-to-image models by incorporating rich-
text attributes as the input. We have demonstrated
the potential for generating and editing images with
local styles, precise colors, texture guidance, differ-
ent token importance, reference images, and com-
plex descriptions. Nevertheless, numerous formatting
options remain unexplored, such as bold/italic, hyper-
links, spacing, and bullets/numbering. Also, there are
multiple ways to use the same formatting options.
For example, one can use font style to characterize
the shape of the objects. We hope this paper encour-
ages further exploration of integrating accessible user
interfaces into text-based content creation tasks, even
beyond images.
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In this appendix, we provide additional experimental results and details. In section A, we show the images
generated by our model, Attend-and-Excite (Chefer et al., 2023), Prompt-to-Prompt (Hertz et al., 2023), and
InstructPix2Pix (Brooks et al., 2023) with various RGB colors, local styles, and detailed descriptions via footnotes.
In section B, we provide additional details on the implementation and evaluation.

A Additional Results
In this section, we first show additional results of rich-text-to-image generation on complex scene synthesis
(Figures 15, 16, and 17), precise color rendering (Figures 18, 19, and 20), local style control (Figures 21 and 22),
and explicit token re-weighting (Figure 23, 24, and 25). We also show an ablation study of the averaging and
maximizing operations across tokens to obtain token maps in Figure 26. We present additional results compared
with a composition-based baseline in Figure 27. Last, we show an ablation of the hyperparameters of our baseline
method InstructPix2Pix (Brooks et al., 2023) on the local style generation application in Figure 28.

Stable Diffusion (Plain-Text) Stable Diffusion (Full-Text) Ours

Attend-and-Excite Prompt-to-Prompt InstructPix2Pix

A car1 driving on the road. A bicycle2 nearby a tree3. A cityscape4 in the background.
1A sleek sports car gleams on the road in the sunlight, with its aerodynamic curves and polished finish catching the light.   2A bicycle with rusted frame and worn tires.
3A dead tree with a few red apples on it.    4A bustling Hongkong cityscape with towering skyscrapers.

Fig. 18: Additional results of the footnote. We show the generation from a complex description of a garden.
Note that all the methods except for ours fail to generate accurate details of the mansion and fountain as described.
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A lush garden1 with a fountain2. A grand mansion3 in the background.
1A garden is full of vibrant colors with a variety of flowers.
2A fountain made of white marble with multiple tiers. The tiers are intricately carved with various designs.
3An impressive two-story mansion with a royal exterior, white columns, and tile-made roof. The mansion has numerous windows, each adorned with white curtains.

Stable Diffusion (Plain-Text) Stable Diffusion (Full-Text) Ours

Attend-and-Excite Prompt-to-Prompt InstructPix2Pix

Fig. 19: Additional results of the footnote. We show the generation from a complex description of a garden.
Note that all the methods except for ours fail to generate accurate details of the mansion and fountain as described.
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Stable Diffusion (Plain-Text) Stable Diffusion (Full-Text) Ours

Attend-and-Excite Prompt-to-Prompt InstructPix2Pix

A small chair1 sits in front of a table2 on the wooden floor. There is a bookshelf3 nearby the window4.
1A black leather office chair with a high backrest and adjustable arms.                 
2A large wooden desk with a stack of books on top of it. 
3A bookshelf filled with colorful books and binders.                                             
4A window overlooks a stunning natural landscape of snow mountains.

Fig. 20: Additional results of the footnote. We show the generation from a complex description of an office. Note
that all the methods except ours fail to generate accurate window overlooks and colorful binders as described.
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Fig. 21: Additional results of the font color. We show the generation of different objects with colors from the
Common category. Prompt-to-Prompt has a large failure rate of respecting the given color name, while
InstructPix2Pix tends to color the background and irrelevant objects.
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Fig. 22: Additional results of the font color. We show the generation of different objects with colors from the
HTML category. Both methods fail to generate the precise color, and InstructPix2Pix tends to color the
background and irrelevant objects.
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(25, 75, 226) (116, 6, 93)(39, 126, 109) (105, 28, 226)(99, 219, 32) (219, 100, 27)(222, 80, 195) (208, 211, 9)(211, 22, 52)

Fig. 23: Additional results of the font color. We show the generation of different objects with colors from the
RGB category. Both baseline methods cannot interpret the RGB values correctly.
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Fig. 24: Additional results of the font style. We show images generated with different style combinations and
prompt “a beautiful garden in front of a snow mountain”. Each row contains “snow mountain” in 7 styles, and
each column contains “garden” in 7 styles. Only our method can generate distinct styles for both objects.
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Fig. 25: Additional results of the font style. We show images generated with different style combinations and
prompt “a small pond surrounded by skyscraper”. Each row contains “skyscraper” in 7 styles, and each column
contains “pond” in 7 styles. Only our method can generate distinct styles for both objects.
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Repeating: A pizza with pineapples, pepperonis, and mushrooms, mushrooms, mushrooms.

Parenthesis: A pizza with pineapples, pepperonis, and ((mushrooms)).

Prompt-to-Prompt: A pizza with pineapples, pepperonis, and mushrooms.

Ours: A pizza with pineapples, pepperonis, and mushrooms.

1× 3× 5× 7× 9× 11× 13× 15× 17× 19×

Fig. 26: Additional results of font sizes. We use a token weight evenly sampled from 1 to 20 for the word
‘mushrooms’ with our method and Prompt-to-Prompt. For parenthesis and repeating, we show results by
repeating the word ‘mushrooms’ and adding parentheses to the word ‘mushrooms’ for 1 to 10 times.
Prompt-to-Prompt suffers from generating artifacts. Heuristic methods are not effective.

Repeating: A pizza with pineapples, pineapples, pineapples, pepperonis, and mushrooms.

Parenthesis: A pizza with ((pineapples)), pepperonis, and mushrooms.

Prompt-to-Prompt: A pizza with pineapples, pepperonis, and mushrooms.

Ours: A pizza with pineapples, pepperonis, and mushrooms.

1× 3× 5× 7× 9× 11× 13× 15× 17× 19×

Fig. 27: Additional results of font sizes. We use a token weight evenly sampled from 1 to 20 for the word
‘pineapples’ with our method and Prompt-to-Prompt. For parenthesis and repeating, we show results by repeating
the word ‘pineapples’ and adding parentheses to the word ‘pineapples’ for 1 to 10 times. Prompt-to-Prompt
suffers from generating artifacts. Heuristic methods are not effective.
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Repeating: A pizza with pineapples, pepperonis, pepperonis, pepperonis, and mushrooms.

Parenthesis: A pizza with pineapples, ((pepperonis)), and mushrooms.

Prompt-to-Prompt: A pizza with pineapples, pepperonis, and mushrooms.

Ours: A pizza with pineapples, pepperonis, and mushrooms.

1× 3× 5× 7× 9× 11× 13× 15× 17× 19×

Fig. 28: Additional results of font sizes. We use a token weight evenly sampled from 1 to 20 for the word
‘pepperonis’ with our method and Prompt-to-Prompt. For parenthesis and repeating, we show results by
repeating the word ‘pepperonis’ and adding parentheses to the word ‘pepperonis’ for 1 to 10 times.
Prompt-to-Prompt suffers from generating artifacts. Heuristic methods are not effective.
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Prompt-to-
Prompt

Ours

a cat (Pixel Art) sitting on a meadow (Van Gogh).

Instruct
Pix2Pix

Prompt-to-
Prompt

Ours

A stream train (Ukiyo-e) on the mountain side (Claude Monet).

Instruct
Pix2Pix

Fig. 29: Comparison with a simple composed-based method using different random seeds. Since the
methods like Prompt-to-Prompt (Hertz et al., 2023) cannot generate multiple styles on a single image, one simple
idea to fix this is to apply the methods on two regions separately and compose them using the token maps.
However, we show that this leads to sharp changes and artifacts at the boundary areas.
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Fig. 30: Ablation of the classifier free guidance of InstructPix2Pix. We show that InstruxtPix2Pix fails to
generate both styles with different image and text classifier-free guidance (cfg) weights. When image-cfg is low,
the desert is lost after the first editing. We use image-cfg= 1.5 and text-cfg= 7.5 in our experiment.
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Fig. 31: Ablation on the hyperparameter λ in Equation (7). We report the trade-off of CLIP similarity and
color distance achieved by sweeping the strength of color optimization λ.

Prompt-to-Prompt Improved Prompt-to-Prompt Ours

a garden (Claude Monet) in front of a snow mountain (Ukiyo-e)

No Style

Fig. 32: Improved Prompt-to-Prompt. Further constraining the attention maps for styles does not resolve the
mixed style issue.

Ablation of the color guidance weight. Changing the guidance strength λ allows us to control the trade-off
between fidelity and color precision. To evaluate the fidelity of the image, we compute the CLIP score between the
generation and the plain text prompt. We plot the CLIP similarity vs. color distance in Figure 31 by sweeping λ
from 0 to 20. Increasing the strength always reduces the CLIP similarity as details are removed to satisfy the color
objective. We find that larger λ first reduces and then increases the distances due to the optimization divergence.

Constrained Prompt-to-Prompt. The original Attention Refinement proposed in Prompt-to-Prompt (Hertz et al.,
2023) does not apply any constraint to newly added tokens’ attention maps, which may be the reason that it fails
with generating distinct styles. Therefore, we attempt to improve Prompt-to-Prompt by injecting the cross-attention
maps for the newly added style tokens. For example, in Figure 32, we use the cross attention map of “garden” for
the style “Claude Monet”. However, the method still produces a uniform style.

Human Evaluation We conduct a user study on crowdsourcing platforms. We show human annotators a pair
of generated images and ask them which image more accurately expresses the reference color, artistic styles, or
supplementary descriptions. To compare ours with each baseline, we show 135 font color pairs, 167 font style
pairs, and 21 footnote pairs to three individuals and receive 1938 responses. As shown in the table below, our
method is chosen more than 80% of the time over both baselines for producing more precise color and content
given the long prompt and more than 65% of the time for rendering more accurate artistic styles. We will include
a similar study at a larger scale in our revision.
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Table 3: Human evaluation results.

Color Style Footnote

Ours vs. Prompt-to-Prompt 88.2% 65.2% 84.1%
Ours vs. InstructPix2Pix 80.7% 69.8% 87.3%

B Additional Details

B.1 Rich-text Benchmark
This section details our construction process of the rich-text benchmark.

Footnote evaluation. Here we provide our full prompt template used for GPT-4 to create complex scene prompts
with two stages, which typically include three primary parts components:

• Instruction describe the goal of task. In the first step, the goal is to generate both global and local description
of the scene. In the second step, the goal is to compose the descriptions in an organic manner.

• In-context exemplars help enhance the model’s capability for these specific tasks and define the output
format by providing manually created examples.

• User prompt is added in the end to initiate the task and let the model continue the conversation and generate
the complex scene descriptions.

Font style evaluation. To compute the local CLIP scores at each local region to evaluate the stylization quality,
we need to create test prompts with multiple objects and styles. We use seven popular styles that people use to
describe the artistic styles of the generation, as listed below. Note that for each style, to achieve the best quality,
we also include complementary information like the name of famous artists in addition to the style.
styles = [

’Claud Monet, impressionism, oil on canvas’,
’Ukiyoe’,
’Cyber Punk, futuristic’,
’Pop Art, masterpiece, Andy Warhol’,
’Vincent Van Gogh’,
’Pixel Art, 8 bits, 16 bits’,
’Abstract Cubism, Pablo Picasso’

]
We also manually create a set of prompts, where each contains a combination of two objects, for stylization, result-
ing in 420 prompts in total. We generally confirm that Stable Diffusion (Rombach et al., 2022) can generate the
correct combination, as our goal is not to evaluate the compositionality of the generation as in DrawBench (Saharia
et al., 2022). The prompts and the object tokens used for our method are listed below.
candidate_prompts = [

’A garden with a mountain in the distance.’: [’garden’, ’mountain’],
’A fountain in front of an castle.’: [’fountain’, ’castle’],
’A cat sitting on a meadow.’: [’cat’, ’meadow’],
’A lighthouse among the turbulent waves in the night.’: [’lighthouse’, ’turbulent waves’],
’A stream train on the mountain side.’: [’stream train’, ’mountain side’],
’A cactus standing in the desert.’: [’cactus’, ’desert’],
’A dog sitting on a beach.’: [’dog’, ’beach’],
’A solitary rowboat tethered on a serene pond.’: [’rowboat’, ’pond’],
’A house on a rocky mountain.’: [’house’, ’mountain’],
’A rustic windmill on a grassy hill.’: [’rustic’, ’hill’],

]
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Table 4: The complete prompt to generate scene and object descriptions used in the first step in creating complex
image prompt.

Role Content

Instruction System: ”In this task, you act like visual and captioning experts, write a caption of a
complex scene image. The description contains an overall description of the scene and
several descriptions of the object details that appear in the scene. Please only describe
visual information in the caption. Here are some examples:”

In-context examples

Assistant: “Scene: A cozy cabin nestled in a snowy forest, and a snowman stands in the
yard. Cabin: A charming wooden cabin with Christmas decoration, warm light coming out
from the windows. Snowy Forest: Towering evergreen trees covered in a thick layer of
pristine snow. Snowman: A cute snowman wearing a carrot nose, coal eyes, and a colorful
scarf, welcoming visitors with a cheerful vibe.”

Assistant: “Scene: A coffee table sits in front of a sofa on a cozy carpet. A painting on the
wall. Coffee table: A rustic wooden coffee table adorned with scented candles and many
books. Sofa: A plush sofa with a soft blanket and colorful pillows on it. Painting: A
painting of wheat field with a cottage in the distance, close up shot, trending on artstation,
HD, calm, complimentary color, realistic lighting, by Albert Bierstadt, Frederic Church.”

Assistant: “Scene: A close-up of a cat riding a scooter. Tropical trees in the background.
Cat: A cat wearing sunglasses and has a bandana around its neck.”

Assistant: “Scene: A car driving on the road. A bicycle nearby a tree. A cityscape in the
background. Car: A sleek sports car gleams on the road in the sunlight, with its
aerodynamic curves and polished finish catching the light. Bicycle: A bicycle with rusted
frame and worn tires. Tree: A dead tree with a few red apples on it. Cityscape: A bustling
Hongkong cityscape with towering skyscrapers.”

Assistant: “Scene: A beach bonfire party with people sitting around the fire, surfboards
leaning on a dune, and a cooler is nearby. People: People wearing casual beachwear, some
wrapped in blankets, some holding cups of beer. Fire: Crackling fire with driftwood logs and
glowing embers. Surfboards: Colorful and waxed surfboards are lined up, leaning against a
sand dune. Cooler: A white cooler with blue cover filled with an assortment of beverages.”

Assistant: “Scene: A small chair sits in front of a table on the wooden floor. There is a
bookshelf nearby the window. Chair: A black leather office chair with a high backrest and
adjustable arms. Table: A large wooden desk with a stack of books on top of it. Bookshelf:
A bookshelf filled with colorful books and binders. Window: A window overlooks a
stunning natural landscape of snow mountains.”

Assistant: “Scene: A lush garden with a fountain. A grand mansion in the background.
Garden: A garden is full of vibrant colors with a variety of flowers. Fountain: A fountain
made of white marble with multiple tiers. The tiers are intricately carved with various
designs. Mansion: An impressive two-story mansion with a royal exterior, white columns,
and tile-made roof. The mansion has numerous windows, each adorned with white
curtains.”
Assistant: “Scene: A serene beach with crystal-clear turquoise water and palm trees. A
couple walking along the shoreline. Beach: The beach has pink sand with seashells, crabs,
and starfish on it. Palm Trees: Tall, swaying palm trees with lush green fronds and green
coconuts. Couple: A young couple in matching, red beachwear, smiling as they enjoy their
romantic stroll.”
Assistant: “Scene: A cozy cafe with chalkboard menus, a barista behind the counter, and a
pastry display. Chalkboard Menus: Chalkboard menus with handwritten lists of coffees and
teas, specials highlighted. Barista: A barista wearing black uniform and a tie is steaming
milk for a latte. Pastry Display: A glass pastry display filled with croissants, muffins, and
scones.”

User prompt User : ”Can you provide more examples like those above?”
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Table 5: The complete prompt to generate full descriptions used in the second step in creating complex image
prompt.

Role Content

Instruction System: ”In this task you are acting like a text editing expert. You are given an overall
description of a scene and several descriptions of the object details that appear in the scene.
Your job is to compose the descriptions into a paragraph that describe the scene. Make sure
that the grammar is correct and the flow is natural. Here are a few examples:”

In-context examples

User: “Scene: A serene beach with crystal-clear turquoise water and palm trees. A couple
walking along the shoreline. Beach: The beach has pink sand with seashells, crabs, and
starfish on it. Palm Trees: Tall, swaying palm trees with lush green fronds and green
coconuts. Couple: A young couple in matching, red beachwear, smiling as they enjoy their
romantic stroll.”
Assistant: “A serene beach with crystal-clear turquoise water and tall, swaying palm trees
with lush green fronds and green coconuts. The beach has pink sand with seashells, crabs,
and starfish on it. A couple in matching, red beachwear walking along the
shoreline,smiling as they enjoy their romantic stroll.”

User: “Scene: A cozy cabin nestled in a snowy forest, and a snowman stands in the yard.
Cabin: A charming wooden cabin with Christmas decoration, warm light coming out from
the windows. Snowy Forest: Towering evergreen trees covered in a thick layer of pristine
snow. Snowman: A cute snowman wearing a carrot nose, coal eyes, and a colorful scarf,
welcoming visitors with a cheerful vibe.”

Assistant: “A cozy, charming wooden cabin with Christmas decoration and warm light
coming out from the windows nestled in a snowy forest with towering evergreen trees
covered in a thick layer of pristine snow. A cute snowman a wearing a carrot nose, coal
eyes, and acolorful scarf, welcoming visitors with a cheerful vibe, stands in the yard.”

User: “Scene: A street vendor surrounded by the shoppers. Buildings in the background.
Street Vendor: A friendly street vendor stands behind a cart filled with an assortment of
fresh fruits and vegetables. Shoppers: Diverse shoppers wearing Indian traditional clothes,
carrying eco-friendly bags. Buildings: Indian-style old buildings in various colors.”

Assistant: “A friendly street vendor stands behind a cart filled with an assortment of fresh
fruits and vegetables surrounded by the diverse shoppers wearing Indian traditional clothes,
carrying eco-friendly bags. Indian-style old buildings in various colors in thebackground.”

User: “Scene: A vineyard in front of a winery on a sunny day. Winery: An elegant winery
building with a rustic charm, set against a backdrop of rolling hills. Oak Wine barrels
stacked outside. Vineyard: vineyard with rows of Lush green grapevines heavy with ripe,
plump grapes, waiting to be harvested.”

Assistant: “A vineyard with rows of Lush green grapevines heavy with ripe, plump grapes,
waiting to be harvested, in front of a elegant winery building with a rustic charm, set
against a backdrop of rolling hills. Oak Wine barrels stacked outside, a sunny day”

User prompt User : “Can you write the descriptions given the new user input below. Do not add
descriptions that are not part of the user input. + [user prompt]
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Font color evaluation. To evaluate precise color generation capacity, we create a set of prompts with colored
objects. We divide the potential colors into three levels according to the difficulty of text-to-image generation mod-
els to depend on. The easy-level color set contains 17 basic color names that these models generally understand.
The complete set is as below.
COLORS_easy = {

’brown’: [165, 42, 42],
’red’: [255, 0, 0],
’pink’: [253, 108, 158],
’orange’: [255, 165, 0],
’yellow’: [255, 255, 0],
’purple’: [128, 0, 128],
’green’: [0, 128, 0],
’blue’: [0, 0, 255],
’white’: [255, 255, 255],
’gray’: [128, 128, 128],
’black’: [0, 0, 0],
’crimson’: [220, 20, 60],
’maroon’: [128, 0, 0],
’cyan’: [0, 255, 255],
’azure’: [240, 255, 255],
’turquoise’: [64, 224, 208],
’magenta’: [255, 0, 255],

}
The medium-level set contain color names that are selected from the HTML color names 2. These colors are

also standard to use for website design. However, their names are less often occurring in the image captions,
making interpretation by a text-to-image model challenging. To address this issue, we also append the coarse color
category when possible, e.g., “Chocolate” to “Chocolate brown”. The complete list is below.
COLORS_medium = {

’Fire Brick red’: [178, 34, 34],
’Salmon red’: [250, 128, 114],
’Coral orange’: [255, 127, 80],
’Tomato orange’: [255, 99, 71],
’Peach Puff orange’: [255, 218, 185],
’Moccasin orange’: [255, 228, 181],
’Goldenrod yellow’: [218, 165, 32],
’Olive yellow’: [128, 128, 0],
’Gold yellow’: [255, 215, 0],
’Lavender purple’: [230, 230, 250],
’Indigo purple’: [75, 0, 130],
’Thistle purple’: [216, 191, 216],
’Plum purple’: [221, 160, 221],
’Violet purple’: [238, 130, 238],
’Orchid purple’: [218, 112, 214],
’Chartreuse green’: [127, 255, 0],
’Lawn green’: [124, 252, 0],
’Lime green’: [50, 205, 50],
’Forest green’: [34, 139, 34],
’Spring green’: [0, 255, 127],
’Sea green’: [46, 139, 87],

2https://simple.wikipedia.org/wiki/Web color
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’Sky blue’: [135, 206, 235],
’Dodger blue’: [30, 144, 255],
’Steel blue’: [70, 130, 180],
’Navy blue’: [0, 0, 128],
’Slate blue’: [106, 90, 205],
’Wheat brown’: [245, 222, 179],
’Tan brown’: [210, 180, 140],
’Peru brown’: [205, 133, 63],
’Chocolate brown’: [210, 105, 30],
’Sienna brown’: [160, 82, 4],
’Floral White’: [255, 250, 240],
’Honeydew White’: [240, 255, 240],

}
The hard-level set contains 50 randomly sampled RGB triplets as we aim to generate objects with arbitrary

colors indicated in rich texts. For example, the color can be selected by an RGB slider.
COLORS_hard = {

’color of RGB values [68, 17, 237]’: [68, 17, 237],
’color of RGB values [173, 99, 227]’: [173, 99, 227],
’color of RGB values [48, 131, 172]’: [48, 131, 172],
’color of RGB values [198, 234, 45]’: [198, 234, 45],
’color of RGB values [182, 53, 74]’: [182, 53, 74],
’color of RGB values [29, 139, 118]’: [29, 139, 118],
’color of RGB values [105, 96, 172]’: [105, 96, 172],
’color of RGB values [216, 118, 105]’: [216, 118, 105],
’color of RGB values [88, 119, 37]’: [88, 119, 37],
’color of RGB values [189, 132, 98]’: [189, 132, 98],
’color of RGB values [78, 174, 11]’: [78, 174, 11],
’color of RGB values [39, 126, 109]’: [39, 126, 109],
’color of RGB values [236, 81, 34]’: [236, 81, 34],
’color of RGB values [157, 69, 64]’: [157, 69, 64],
’color of RGB values [67, 192, 60]’: [67, 192, 60],
’color of RGB values [181, 57, 181]’: [181, 57, 181],
’color of RGB values [71, 240, 139]’: [71, 240, 139],
’color of RGB values [34, 153, 226]’: [34, 153, 226],
’color of RGB values [47, 221, 120]’: [47, 221, 120],
’color of RGB values [219, 100, 27]’: [219, 100, 27],
’color of RGB values [228, 168, 120]’: [228, 168, 120],
’color of RGB values [195, 31, 8]’: [195, 31, 8],
’color of RGB values [84, 142, 64]’: [84, 142, 64],
’color of RGB values [104, 120, 31]’: [104, 120, 31],
’color of RGB values [240, 209, 78]’: [240, 209, 78],
’color of RGB values [38, 175, 96]’: [38, 175, 96],
’color of RGB values [116, 233, 180]’: [116, 233, 180],
’color of RGB values [205, 196, 126]’: [205, 196, 126],
’color of RGB values [56, 107, 26]’: [56, 107, 26],
’color of RGB values [200, 55, 100]’: [200, 55, 100],
’color of RGB values [35, 21, 185]’: [35, 21, 185],
’color of RGB values [77, 26, 73]’: [77, 26, 73],
’color of RGB values [216, 185, 14]’: [216, 185, 14],
’color of RGB values [53, 21, 50]’: [53, 21, 50],
’color of RGB values [222, 80, 195]’: [222, 80, 195],
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’color of RGB values [103, 168, 84]’: [103, 168, 84],
’color of RGB values [57, 51, 218]’: [57, 51, 218],
’color of RGB values [143, 77, 162]’: [143, 77, 162],
’color of RGB values [25, 75, 226]’: [25, 75, 226],
’color of RGB values [99, 219, 32]’: [99, 219, 32],
’color of RGB values [211, 22, 52]’: [211, 22, 52],
’color of RGB values [162, 239, 198]’: [162, 239, 198],
’color of RGB values [40, 226, 144]’: [40, 226, 144],
’color of RGB values [208, 211, 9]’: [208, 211, 9],
’color of RGB values [231, 121, 82]’: [231, 121, 82],
’color of RGB values [108, 105, 52]’: [108, 105, 52],
’color of RGB values [105, 28, 226]’: [105, 28, 226],
’color of RGB values [31, 94, 190]’: [31, 94, 190],
’color of RGB values [116, 6, 93]’: [116, 6, 93],
’color of RGB values [61, 82, 239]’: [61, 82, 239],

}
To write a complete prompt, we create a list of 12 objects and simple prompts containing them as below. The

objects would naturally exhibit different colors in practice, such as “flower”, “gem”, and “house”.
candidate_prompts = [

’a man wearing a shirt’: ’shirt’,
’a woman wearing pants’: ’pants’,
’a car in the street’: ’car’,
’a basket of fruit’: ’fruit’,
’a bowl of vegetable’: ’vegetable’,
’a flower in a vase’: ’flower’,
’a bottle of beverage on the table’: ’bottle beverage’,
’a plant in the garden’: ’plant’,
’a candy on the table’: ’candy’,
’a toy on the floor’: ’toy’,
’a gem on the ground’: ’gem’,
’a church with beautiful landscape in the background’: ’church’,

]

B.2 Experiment Details

Baseline. We compare our method quantitatively with two strong baselines, Prompt-to-Prompt (Hertz et al., 2023)
and InstructPix2Pix (Brooks et al., 2023). The prompt refinement application of Prompt-to-Prompt allows adding
new tokens to the prompt. We use plain text as the base prompt and add color or style to create the modified prompt.
InstructPix2Pix (Brooks et al., 2023) allows using instructions to edit the image. We use the image generated by
the plain text as the input image and create the instructions using templates “turn the [object] into the style of
[style],” or “make the color of [object] to be [color]”. For the stylization experiment, we apply two instructions in
both parallel (InstructPix2Pix-para) and sequence (InstructPix2Pix-seq). We tune both methods on a separate set
of manually created prompts to find the best hyperparameters. In contrast, it is worth noting that our method does
not require hyperparameter tuning.

Running time. The inference time of our models depends on the number of attributes added to the rich text since
we implement each attribute with an independent diffusion process. In practice, we always use a batch size of 1 to
make the code compatible with low-resource devices. In our experiments on an NVIDIA RTX A6000 GPU, each
sampling based on the plain text takes around 5.06 seconds, while sampling an image with two styles takes around
8.07 seconds, and sampling an image with our color optimization takes around 13.14 seconds.
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