
Expressive Text-to-Image Generation with Rich Text

Songwei Ge1 Taesung Park2 Jun-Yan Zhu3 Jia-Bin Huang1

1University of Maryland, College Park 2Adobe Research 3Carnegie Mellon University
https://rich-text-to-image.github.io/

A pizza with pineapples, pepperonis, and
mushrooms on the top, 4k, photorealism.

A marble statue of a wolf's head and shoulder,
surrounded by colorful flowers

A nightstand1 next to a bed with pillows on it. Gray
wall2 bedroom.

1A nightstand with some books. 2Accent shelf with plants on the gray wall.

A close-up of a cat1 riding a scooter. Tropical
trees in the background.

1A cat wearing sunglasses and has a bandana around its neck.

A night sky filled with stars above a turbulent
sea with giant waves.

Styles: Van Gogh, Hokusai.

A young woman1 sits at a table in a beautiful, lush
garden, reading a book on the table.

Style: Claude Monet 1Girl with a pearl earring by Johannes Vermeer.

Figure 1. Plain text (left image) vs. Rich text (right image). Our method allows a user to describe an image using a rich text editor that
supports various text attributes such as font family, size, color, and footnote. Given these text attributes extracted from rich text prompts,
our method enables precise control of text-to-image synthesis regarding colors, styles, and object details compared to plain text.

Abstract
Plain text has become a prevalent interface for text-to-

image synthesis. However, its limited customization options
hinder users from accurately describing desired outputs.
For example, plain text makes it hard to specify continu-
ous quantities, such as the precise RGB color value or im-
portance of each word. Furthermore, creating detailed text
prompts for complex scenes is tedious for humans to write
and challenging for text encoders to interpret. To address
these challenges, we propose using a rich-text editor sup-
porting formats such as font style, size, color, and footnote.
We extract each word’s attributes from rich text to enable
local style control, explicit token reweighting, precise color
rendering, and detailed region synthesis. We achieve these
capabilities through a region-based diffusion process. We
first obtain each word’s region based on attention maps of
a diffusion process using plain text. For each region, we en-
force its text attributes by creating region-specific detailed
prompts and applying region-specific guidance, and main-
tain its fidelity against plain-text generation through region-
based injections. We present various examples of image
generation from rich text and demonstrate that our method

outperforms strong baselines with quantitative evaluations.

1. Introduction
The development of large-scale text-to-image generative

models [52, 56, 54, 28] has propelled image generation to
an unprecedented era. The great flexibility of these large-
scale models further offers users powerful control of the
generation through visual cues [4, 17, 77] and textual in-
puts [7, 19]. Without exception, existing studies use plain
text encoded by a pretrained language model to guide the
generation. However, in our daily life, it is rare to use only
plain text when working on text-based tasks such as writing
blogs or editing essays. Instead, a rich text editor [68, 71]
is the more popular choice providing versatile formatting
options for writing and editing text. In this paper, we seek
to introduce accessible and precise textual control from rich
text editors to text-to-image synthesis.

Rich text editors offer unique solutions for incorporat-
ing conditional information separate from the text. For ex-
ample, using the font color, one can indicate an arbitrary
color. In contrast, describing the precise color with plain
text proves more challenging as general text encoders do

https://rich-text-to-image.github.io/

not understand RGB or Hex triplets, and many color names,
such as ‘olive’ and ‘orange’, have ambiguous meanings.
This font color information can be used to define the color
of generated objects. For example, in Figure 1, a specific
yellow can be selected to instruct the generation of a mar-
ble statue with that exact color.

Beyond providing precise color information, various font
formats make it simple to augment the word-level informa-
tion. For example, reweighting token influence [19] can
be implemented using the font size, a task that is difficult
to achieve with existing visual or textual interfaces. Rich
text editors offer more options than font size – similar to
how font style distinguishes the styles of individual text el-
ements, we propose using it to capture the artistic style of
specific regions. Another option is using footnotes to pro-
vide supplementary descriptions for selected words, simpli-
fying the process of creating complex scenes.

But how can we use rich text? A straightforward im-
plementation is to convert a rich-text prompt with detailed
attributes into lengthy plain text and feed it directly into ex-
isting methods [54, 19, 7]. Unfortunately, these methods
struggle to synthesize images corresponding to lengthy text
prompts involving multiple objects with distinct visual at-
tributes, as noted in a recent study [12]. They often mix
styles and colors, applying a uniform style to the entire im-
age. Furthermore, the lengthy prompt introduces extra dif-
ficulty for text encoders to interpret accurate information,
making generating intricate details more demanding.

To address these challenges, our insight is to decompose
a rich-text prompt into two components (1) a short plain-
text prompt (without formatting) and (2) multiple region-
specific prompts that include text attributes, as shown in
Figure 2. First, we obtain the self- and cross-attention maps
using a vanilla denoising process with the short plain-text
prompt to associate each word with a specific region. Sec-
ond, we create a prompt for each region using the attributes
derived from rich-text prompt. For example, we use “moun-
tain in the style of Ukiyo-e” as the prompt for the region cor-
responding to the word “mountain” with the attribute “font
style: Ukiyo-e”. For RGB font colors that cannot be con-
verted to the prompts, we iteratively update the region with
region-based guidance to match the target color. We apply a
separate denoising process for each region and fuse the pre-
dicted noises to get the final update. During this process,
regions associated with the tokens that do not have any for-
mats are supposed to look the same as the plain-text results.
Also, the overall shape of the objects should stay unchanged
in cases such as only the color is changed. To this end, we
propose to use region-based injection approaches.

We demonstrate qualitatively and quantitatively that our
method generates more precise color, distinct styles, and
accurate details compared to plain text-based methods.

2. Related Work

Text-to-image models. Text-to-image systems aim to syn-
thesize realistic images according to descriptions [82, 42].
Fueled by the large-scale text-image datasets [60, 8], vari-
ous training and inference techniques [20, 62, 21, 22], and
scalibility [51], significant progress has been made in text-
to-image generation using diffusion models [4, 51, 45, 56,
17], autoregressive models [52, 76, 11, 15], GANs [59, 28],
and their hybrids [54]. Our work focuses on making these
models more accessible and providing precise controls. In
contrast to existing work that uses plain text, we use a rich
text editor with various formatting options.

Controllable image synthesis with diffusion models. A
wide range of image generation and editing applications
are achieved through either fine-tuning pre-trained diffusion
models [55, 32, 77, 3, 72, 30, 41, 35] or modifying the de-
noising process [43, 13, 19, 46, 5, 12, 2, 4, 26, 6, 58, 78, 9,
48, 48, 73, 16]. For example, Prompt-to-prompt [19] uses
attention maps from the original prompt to guide the spa-
tial structure of the target prompt. Although these methods
can be applied to some rich-text-to-image applications, the
results often fall short, as shown in Section 4. Concurrent
with our work, Mixture-of-diffusion [26] and MultiDiffu-
sion [6] propose merging multiple diffusion-denoising pro-
cesses in different image regions through linear blending.
Instead of relying on user-provided regions, we automat-
ically compute regions of selected tokens using attention
maps. Gradient [24] and Universal [5] guidance control the
generation by optimizing the denoised generation at each
time step. We apply them to precise color generation by
designing an objective on the target region to be optimized.

Attention in diffusion models. The attention mech-
anism has been used in various diffusion-based applica-
tions such as view synthesis [37, 66, 70], image edit-
ing [19, 12, 47, 46, 32], and video editing [38, 49, 10, 40].
We also leverage the spatial structure in self-attention maps
and alignment information between texts and regions in
cross-attention maps for rich-text-to-image generation.

Rich text modeling and application. Exploiting in-
formation beyond the intrinsic meanings of the texts has
been previously studied [44, 63, 75, 34]. For example, vi-
sual information, such as underlining and bold type, have
also been extracted for various document understanding
tasks [75, 34]. To our knowledge, we are the first to leverage
rich text information for text-to-image synthesis.

Image stylization and colorization. Style transfer [18,
81, 39] and Colorization [53, 64, 74, 33, 79, 80] for editing
real images have also been extensively studied. In contrast,
our work focuses on local style and precise color control for
generating images from text-to-image models.

"church ":{
 "color": "#FF9900"
},
"snowy mountain range in the distance":{
 "font": “Ukiyo-e"
 },
"a ", " surrounded by a beautiful ", " a ": {
},
"garden":{
 “footnote": “a garden filled with colorful wildflowers",
},

Rich text editor

Rich text

a church surrounded by a beautiful garden,
a snowy mountain range in the distance

Plain text

"garden" "a snowy
mountain …"

"church" Other tokens

Token maps :

(a) Plain text to image

(b) Rich text to image

Vanilla Diffusion

Region-based
Diffusion

Rich-Text Input Diffusion Output

Plain-Text Input

Noised Sample Feature Maps Self-Attention Maps

Cross-Attention Maps

Figure 2. Rich-text-to-image framework. First, the plain-text prompt is processed by a diffusion model to collect self- and cross-attention
maps, noised generation, and residual feature maps at certain steps. The token maps of the input prompt are constructed by first creating a
segmentation using the self-attention maps and then labeling each segment using the cross-attention maps. Then the rich texts are processed
as JSON to provide attributes for each token span. The resulting token maps and attributes are used to guide our region-based control. We
inject the self-attention maps, noised generation, and feature maps to improve fidelity to the plain-text generation.

3. Rich Text to Image Generation
From writing messages on communication apps, de-

signing websites [57], to collaboratively editing a docu-
ment [36, 25], a rich text editor is often the primary inter-
face to edit texts on digital devices. Nonetheless, only plain
text has been used in text-to-image generation. To use for-
matting options in rich-text editors for more precise control
over the black-box generation process [1], we first introduce
a problem setting called rich-text-to-image generation. We
then discuss our approach to this task.

3.1. Problem Setting

As shown in Figure 2, a rich text editor supports various
formatting options, such as font styles, font size, color, and
more. We leverage these text attributes as extra information
to increase control of text-to-image generation. We interpret
the rich-text prompt as JSON, where each text element con-
sists of a span of tokens ei (e.g., ‘church’) and attributes ai

describing the span (e.g., ‘color:#FF9900’). Note that some
tokens eU may not have any attributes. Using these anno-
tated prompts, we explore four applications: 1) local style
control using font style, 2) precise color control using font
color, 3) detailed region description using footnotes, and 4)
explicit token reweighting with font sizes.

Font style is used to apply a specific artistic style as
i ,

e.g., as
i = ‘Ukiyo-e’, to the synthesis of the span of tokens

ei. For instance, in Figure 1, we apply the Ukiyo-e paint-
ing style to the ocean waves and the style of Van Gogh to
the sky, enabling the application of localized artistic styles.
This task presents a unique challenge for existing text-to-

image models, as there are limited training images featuring
multiple artistic styles. Consequently, existing models tend
to generate a uniform mixed style across the entire image
rather than distinct local styles.

Font color indicates a specific color of the modified text
span. Given the prompt “a red toy”, the existing text-to-
image models generate toys in various shades of red, such
as light red, crimson, or maroon. The color attribute pro-
vides a way for specifying a precise color in the RGB
color space, denoted as ac

i . For example, to generate a
toy in fire brick red, one can change the font color to “a
toy”, where the word “toy” is associated with the attribute
ac
i = [178, 34, 34]. However, as shown in the experi-

ment section, the pretrained text encoder cannot interpret
the RGB values and have difficulty understanding obscure
color names, such as lime and orange.

Footnote provides supplementary explanations of the tar-
get span without hindering readability with lengthy sen-
tences. Writing detailed descriptions of complex scenes is
tedious work, and it inevitably creates lengthy prompts [29,
27]. Additionally, existing text-to-image models are
prone to ignoring some objects when multiple objects are
present [12], especially with long prompts. Moreover, ex-
cess tokens are discarded when the prompt’s length sur-
passes the text encoder’s maximum length, e.g., 77 tokens
for CLIP models [50]. We aim to mitigate these issues using
a footnote string af

i .

Font size can be employed to indicate the importance,
quantity, or size of an object. We use a scalar aw

i to denote
the weight of each token.

!𝑥

Gradient
" church ":{
 "color": "#FF9900"
 },

"garden":{
 "footnote": “a garden
 filled with

 colorful
 wildflowers",
},

a garden filled
with colorful
wildflowers

an orange church

Diffusion
UNet

Predicted noise

RGB: (255, 153, 0)

Guidance Loss

Diffusion
UNet

Token map

Token map

Predicted noise

Token map

Feature injection

Feature injection
Noised Sample Token map

Figure 3. Region-based diffusion. For each element of the rich-text input, we apply a separate diffusion process to its region. The attributes
are either decoded as a region-based guidance target (e.g. re-coloring the church), or as a textual input to the diffusion UNet (e.g. handling
the footnote to the garden). The self-attention maps and feature maps extracted from the plain-text generation process are injected to help
preserve the structure. The predicted noise ϵt,ei , weighted by the token map Mei , and the guidance gradient ∂L

∂xt
are used to denoise and

update the previous generation xt to xt−1. The noised plain text generation xplain
t is blended with the current generation to preserve the

exact content in those regions of the unformatted tokens.

3.2. Method

To utilize rich text annotations, our method consists of
two steps, as shown in Figure 2. First, we compute the spa-
tial layouts of individual token spans. Second, we use a new
region-based diffusion to render each region’s attributes into
a globally coherent image.
Step 1. Token maps for spatial layout. Several works
[65, 40, 4, 19, 12, 47, 67] have discovered that the atten-
tion maps in the self- and cross-attention layers of the dif-
fusion UNet characterize the spatial layout of the genera-
tion. Therefore, we first use the plain text as the input to
the diffusion model and collect self-attention maps of size
32 × 32 × 32 × 32 across different heads, layers, and time
steps. We take the average across all the extracted maps and
reshape the result into 1024 × 1024. Note that the value at
ith row and jth column of the map indicates the probability
of pixel i attending to pixel j. We average the map with its
transpose to convert it to a symmetric matrix. It is used as
a similarity map to perform spectral clustering [61, 69] and
obtain the binary segmentation maps M̂ of size K×32×32,
where K is the number of segments.

To associate each segment with a textual span, we also
extract cross-attention maps for each token wj :

mj =
exp(sj)∑
k exp(sk)

, (1)

where sj is the attention score. We first interpolate each
cross-attention map mj to the same resolution as M̂ of
32×32. Similar to the processing steps of the self-attention
maps, we compute the mean across heads, layers, and time
steps to get the averaged map m̂j . We associate each seg-

ment with a texture span ei following Patashnik et al. [47]:

Mei = {M̂k |
∣∣∣∣ M̂k · m̂j −min(m̂j)

max(m̂j)−min(m̂j)

∣∣∣∣
1

> ϵ, ∀j s.t. wj ∈ ei},

(2)
where ϵ is a hyperparameter that controls the labeling
threshold, that is, the segment M̂k is assigned to the span ei
if the normalized attention score of any tokens in this span
is higher than ϵ. We associate the segments that are not as-
signed to any formatted spans with the unformatted tokens
eU . Finally, we obtain the token map in Figure 2 as below:

Mei
=

∑
M̂j∈Mei

M̂j∑
i

∑
M̂j∈Mei

M̂j

(3)

Step 2. Region-based denoising and guidance. As shown
in Figure 2, given the text attributes and token maps, we di-
vide the overall image synthesis into several region-based
denoising and guidance processes to incorporate each at-
tribute, similar to an ensemble of diffusion models [32, 6].
More specificially, given the span ei, the region defined by
its token map Mei

, and the attribute ai, the predicted noise
ϵt for noised generation xt at time step t is

ϵt =
∑
i

Mei
· ϵt,ei

=
∑
i

Mei
·D(xt, f(ei,ai), t), (4)

where D is the pretrained diffusion model, and f(ei,ai)
is a plain text representation derived from text span ei and
attributes ai using the following process:

1. Initially, we set f(ei,ai) = ei.

2. If footnote af
i is available, we set f(ei,ai) = af

i .

Pi
nk

a church with beautiful landscape

InstructPix2PixOurs Prompt-to-Prompt

(2
11

, 2
2,

 5
2)

O
liv

e
Ye

llo
w

a car in the street a woman wearing pants
G

re
en

(1
05

, 2
8,

 2
26

)
Do

dg
er

 B
lu

e
Bl

ac
k

Pl
um

 P
ur

pl
e

(4
8,

 1
31

, 1
72

)

InstructPix2PixOurs Prompt-to-Prompt InstructPix2PixOurs Prompt-to-Prompt

Figure 4. Qualitative comparison on precise color generation. We show images generated by Prompt-to-Prompt [19], Instruct-
Pix2Pix [7], and our method using prompts with font colors. Our method generates precise colors according to either color names or
RGB values. Both baselines generate plausible but inaccurate colors given color names, while neither understands the color defined by
RGB values. InstructPix2Pix tends to apply the color globally, even outside the target object.

3. The style as
i is appended if it exists. f(ei,ai) =

f(ei,ai) + ‘in the style of’ + as
i .

4. The closest color name (string) of font color âc
i from

a predefined set C is prepended. f(ei,ai) = âc
i +

f(ei,ai). For example, âc
i = ‘brown’ for RGB color

ac
i = [136,68,20].

We use f(ei,ai) as the original plain text prompt of Step
1 for the unformatted tokens eU . This helps us generate a
coherent image, especially around region boundaries.

Guidance. By default, we use classifier-free guidance [23]
for each region to better match the prompt f(ei,ai). In
addition, if the font color is specified, to exploit the RGB
values information further, we apply gradient guidance [24,
14, 5] on the current clean image prediction:

x̂0 =
xt −

√
1− ᾱtϵt√
ᾱt

, (5)

where xt is the noisy image at time step t, and ᾱt is the
coefficient defined by noise scheduling strategy [20]. Here,
we compute an MSE loss L between the average color of
x̂ weighted by the token map Mei

and the RGB triplet ac
i .

The gradient is calculated below,

dL
dxt

=
d∥

∑
p (Mei · x̂0)/

∑
p Mei − ac

i∥22√
ᾱtdx̂0

, (6)

where the summation is over all pixels p. We then update
xt with the following equation:

xt ← xt − λ ·Mei
· dL
dxt

, (7)

where λ is a hyperparameter to control the strength of the
guidance. We use λ = 1 unless denoted otherwise.

Token reweighting with font size. Last, to re-weight the
impact of the token wj according to the font size aw

j , we
modify its cross-attention maps mj . However, instead of
applying direct multiplication as in Prompt-to-Prompt [19]
where

∑
j a

w
j mj ̸= 1, we find that it is critical to preserve

the probability property of mj . We thus propose the follow-
ing reweighting approach:

m̂j =
aw
j exp(sj)∑

k a
w
k exp(sk)

. (8)

We can compute the token map (Equation 3) and predict
the noise (Equation 4) with the reweighted attention map.

Preserve the fidelity against plain-text generation. Al-
though our region-based method naturally maintains the
layout, there is no guarantee that the details and shape of
the objects are retained when no rich-text attributes or only
the color is specified, as shown in Figure 12. To this end, we
follow Plug-and-Play [67] to inject the self-attention maps
and the residual features extracted from the plain-text gen-
eration process when t > Tpnp to improve the structure fi-
delity. In addition, for the regions associated with the unfor-
matted tokens eU , stronger content preservation is desired.
Therefore, at certain t = Tblend, we blend the noised sample
xplain
t based on the plain text into those regions:

xt ←MeU
· xplain

t + (1−MeU
) · xt (9)

4. Experimental Results

Implementation details. We use Stable Diffusion V1-
5 [54] for our experiments. To create the token maps, we
use the cross-attention layers in all blocks, excluding the
first encoder and last decoder blocks, as the attention maps
in these high-resolution layers are often noisy. We discard

A night sky filled with stars (1st Region: Van Gogh) above a turbulent sea with giant waves (2nd Region: Ukiyo-e)

Prompt-to-Prompt InstructPix2Pix-para InstructPix2Pix-seqOurs

The awe-inspiring sky and sea (1st Region: J.M.W. Turner) by a coast with flowers and grasses in spring (2nd Region: Monet).

Figure 5. Qualitative comparison on style control. We show images generated by Prompt-to-Prompt, InstructPix2Pix, and our method
using prompts with multiple styles. Only our method can generate distinct styles for both regions.

1st Region 2nd Region Both

0.24

0.26

0.28
0.27

0.28
0.28

0.27

0.25

0.26
0.26

0.24

0.25

0.26

0.24

0.25

C
L

IP
Si

m
ila

ri
ty

(↑
)

Ours Prompt-to-Prompt InstructPix2Pix-seq InstructPix2Pix-para

Figure 6. Quantitative evaluation of local style control. We re-
port the CLIP similarity between each stylized region and its re-
gion prompt. Our method achieves the best stylization.

the maps at the initial denoising steps with T > 750. We
use K = 15, ϵ = 0.3, Tpnp = 0.3, Tblend = 0.3, and report
the results averaged from three random seeds for all quanti-
tative experiments. More details, such as the running time,
can be found in Appendix B.

Font style evaluation. We compute CLIP scores [50] for
each local region to evaluate the stylization quality. Specif-
ically, we create prompts of two objects and styles. We
create combinations using 7 popular styles and 10 objects,
resulting in 420 prompts. For each generated image, we
mask it by the token maps of each object and attach the
masked output to a black background. Then, we compute
the CLIP score using the region-specific prompt. For ex-
ample, for the prompt “a lighthouse (Cyberpunk) among
the turbulent waves (Ukiyo-e)”, the local CLIP score of the

Common HTML RGB
0

0.1

0.02

0.04
0.06

0.13

0.11
0.12

0.07 0.07

0.14

Minimal Distance

D
is

ta
nc

e
to

Ta
rg

et
C

ol
or

(↓
)

Ours Prompt-to-Prompt InstructPix2Pix

Common HTML RGB

0.4

0.6

0.8

0.38
0.42

0.46

0.71
0.68

0.73
0.7

0.65

0.71

Mean Distance

Figure 7. Quantitaive evaluation on precise color generation.
Distance against target color is reported (lower is better). Our
method consistently outperforms baselines.

lighthouse region is measured by comparing its similarity
with the prompt “lighthouse in the style of cyberpunk.” We
refer to “lighthouse” as the first region and “waves” as the
second region in this example.

Font color evaluation. To evaluate a method’s capac-
ity to understand and generate a specific color, we divide
colors into three categories. The Common color category
contains 17 standard names, such as “red”, “yellow”, and
“pink”. The HTML color names are selected from the web
color names 1 used for website design, such as “sky blue”,
“lime green”, and “violet purple”. The RGB color category
contains 50 randomly sampled RGB triplets to be used as
“color of RGB values [128, 128, 128]”. To create a complete

1https://simple.wikipedia.org/wiki/Web_color

https://simple.wikipedia.org/wiki/Web_color

Stable Diffusion (Plain-Text) Stable Diffusion (Full-Text) Ours

Attend-and-Excite Prompt-to-Prompt InstructPix2Pix

A coffee table1 sits in front of a sofa2 on a cozy carpet. A painting3 on the wall. cinematic lighting, trending on artstation, 4k, hyperrealistic, focused, extreme details.
1A rustic wooden coffee table adorned with scented candles and many books. 2A plush sofa with a soft blanket and colorful pillows on it.
3A painting of wheat field with a cottage in the distance, close up shot, trending on artstation, HD, calm, complimentary color, realistic lighting, by Albert Bierstadt, Frederic Church.

Figure 8. Qualitative comparison on detailed description generation. We show images generated by Attend-and-Excite, Prompt-to-
Prompt, InstructPix2Pix, and our method using complex prompts. Our method is the only one that can generate all the details faithfully.

prompt, we use 12 objects exhibiting different colors, such
as “flower”, “gem”, and “house”. This gives us a total of
1, 200 prompts. We evaluate color accuracy by computing
the mean L2 distance between the region and target RGB
values. We also compute the minimal L2 distance as some-
times the object should contain other colors for fidelity, e.g.,
the “black tires” of a “yellow car”.

Baselines. For font color and style, we quantitatively
compare our method with two strong baselines, Prompt-to-
Prompt [19] and InstructPix2Pix [7]. When two instructions
exist for each image in our font style experiments, we apply
them in parallel (InstructPix2Pix-para) and sequential man-
ners (InstructPix2Pix-seq). More details are in Appendix B.
We also perform a human evaluation with these two meth-
ods in Appendix Table 1. For re-weighting token impor-
tance, we visually compare with Prompt-to-Prompt [19] and
two heuristic methods, repeating and adding parentheses.
For complex scene generation with footnotes, we also com-

pare with Attend-and-Excite [12].

4.1. Quantitative Comparison

We report the local CLIP scores computed by a ViT-B/32
model in Figure 6. Our method achieves the best overall
CLIP score compared to the two baselines. This demon-
strates the advantage of our region-based diffusion method
for localized stylization. To further understand the capacity
of each model to generate multiple styles, we report the met-
ric on each region. Prompt-to-Prompt and InstructPix2Pix-
para achieve a decent score on the 1st Region, i.e., the region
first occurs in the sentence. However, they often fail to ful-
fill the style in the 2nd Region. We conjecture that the Stable
Diffusion model tends to generate a uniform style for the
entire image, which can be attributed to single-style train-
ing images. Furthermore, InstructPix2Pix-seq performs the
worst in 2nd Region. This is because the first instruction
contains no information about the second region, and the

Prompt-to-Prompt
A pizza with pineapples, pepperonis,

and mushrooms, mushrooms,
mushrooms, mushrooms, mushrooms

A pizza with pineapples, pepperonis,
and (((((mushrooms)))))

Ours: A pizza with pineapples,
pepperonis, and mushrooms

Figure 9. Qualitative comparison on token reweighting. We show images generated by our method and Prompt-to-Prompt using token
weight of 13 for ‘mushrooms’. Prompt-to-Prompt suffers from artifacts due to the large weight. Heuristic methods like repeating and
parenthesis do not work well.

Figure 10. Ablation of token maps. Using solely cross-attention
maps to create token maps leads to inaccurate segmentations, caus-
ing the background to be colored in an undesired way.

second region’s content could be compromised when we ap-
ply the first instruction.

We show quantitative results of precise color genera-
tion in Figure 7. The distance of HTML color is generally
the lowest for baseline methods, as they provide the most
interpretable textual information for text encoders. This
aligns with our expectation that the diffusion model can
handle simple color names, whereas they struggle to handle
the RGB triplet. Our rich-text-to-image generation method
consistently improves on the three categories and two met-
rics over the baselines.

4.2. Visual Comparison

Precise color generation. We show qualitative com-
parison on precise color generation in Figure 4. Instruct-
Pix2Pix [7] is prone to create global color effects rather
than accurate local control. For example, in the flower re-
sults, both the vase and background are changed to the tar-
get colors. Prompt-to-Prompt [19] provides more precise
control over the target region. However, both Prompt-to-
Prompt and InstructPix2Pix fail to generate precise colors.
In contrast, our method can generate precise colors for all

categories and prompts.

Local style generation. Figure 5 shows a visual
comparison of local style generation. When applying
InstructPix2Pix-seq, the style in the first instruction domi-
nates the entire image and undermines the second region.
Figure 13 in Appendix shows that this cannot be fully
resolved using different hyperparameters of classifier-free
guidance. Similar to our observation in the quantitative
evaluation, our baselines tend to generate the image in a
globally uniform style instead of distinct local styles for
each region. In contrast, our method synthesizes the correct
styles for both regions. One may suggest applying baselines
with two stylization processes independently and compos-
ing the results using token maps. However, as shown in
Figure 12 (Appendix), such methods generate artifacts on
the region boundaries.

Complex scene generation. Figure 8 shows comparisons
on complex scene generation. Attend-and-Excite [12] uses
the tokens missing in the full-text generation result as input
to fix the missing objects, like the coffee table and carpet in
the living room example. However, it still fails to generate
all the details correctly, e.g., the books, the painting, and
the blanket. Prompt-to-Prompt [19] and InstructPix2Pix [7]
can edit the painting accordingly, but many objects, like the
colorful pillows and stuff on the table, are still missing. In
contrast, our method faithfully synthesizes all these details
described in the target region.

Token importance control. Figure 9 shows the qualita-
tive comparison on token reweighting. When using a large
weight for ‘mushroom,’ Prompt-to-Prompt generates clear
artifacts as it modifies the attention probabilities to be un-
bounded and creates out-of-distribution intermediate fea-
tures. Heuristic methods fail with adding more mushrooms,
while our method generates more mushrooms and preserves
the quality. More results of different font sizes and target to-
kens are shown in Figures 23 - 25 in Appnedix.

Make the cabin orange.
Turn the wildflowers into style
Claude Monet, Impressionism.
Make the lake crystal-clear,
blueish, glistening in the
sunlight.
……

A rustic orange cabin sits on
the edge of a giant, crystal-
clear, blueish lake. The lake is
glistening in the sunlight.
Wildflowers in the style of
Claude Monet, Impressionism
dot the meadow around the
cabin and lake.

A rustic cabin sits on the
edge of a giant lake.
Wildflowers dot the
meadow around the cabin
and lake.

A rustic cabin sits on
the edge of a giant lake.
Wildflowers dot the
meadow around the cabin
and lake.

A rustic cabin sits on
the edge of a giant lake1.
Wildflowers dot the meadow
around the cabin and lake.

Style: Claude Monet, impressionism

A rustic cabin sits on
the edge of a giant lake1.
Wildflowers dot the meadow
around the cabin and lake.

Style: Claude Monet, impressionism
1A crystal-clear, blueish lake, glistening
in the sunlight.

Stable Diffusion Stable Diffusion (full text) InstructPix2Pix

Ours Ours Ours

Figure 11. Our workflow. (top left) A user begins with an initial plain-text prompt and wishes to refine the scene by specifying the color,
details, and styles. (top center) Naively inputting the whole description in plain text does not work. (top right) InstructPix2Pix [7] fails
to make accurate editing. (bottom) Our method supports precise refinement with region-constrained diffusion processes. Moreover, our
framework can naturally be integrated into a rich text editor, enabling a tight, streamlined UI.

Figure 12. Ablation of injection method. We show images gen-
erated based on plain text and rich text with or without injection
methods. Injecting features and noised samples help preserve the
structure of the church and unformatted token regions.

Interactive editing. In Figure 11, we showcase a sample
workflow to illustrate our method’s interactive strength and
editing capacity over InstructPix2Pix [7].

4.3. Ablation Study

Generating token maps solely from cross-attention. The
other straightforward way to create token maps is to use
cross-attention maps directly. To ablate this, we first take
the average of cross-attention maps across heads, layers,
and time steps and then take the maximum across tokens.
Finally, we apply softmax across all the spans to normal-
ize the token maps. However, as shown by the example
in Figure 10, since the prompt has no correspondence with
the background, the token map of “shirt” also covers partial
background regions. Note that simple thresholding is inef-
fective as some regions still have high values, e.g., the right
shoulder. As a result, the target color bleeds into the back-
ground. Our methods obtain more accurate token maps and,
consequently, more precise colorization.

Ablation of the injection methods. To demonstrate the

effectiveness of our injection method, we compare image
generation with and without it in Figure 12. In the font color
example, we show that applying the injection effectively
preserves the shape and details of the target church and the
structure of the sunset in the background. In the footnote
example, we show that the injection keeps the looking of
the black door and the color of the floor.

5. Discussion and Limitations
In this paper, we have expanded the controllability of

text-to-image models by incorporating rich-text attributes
as the input. We have demonstrated the potential for gen-
erating images with local styles, precise colors, different
token importance, and complex descriptions. Neverthe-
less, numerous formatting options remain unexplored, such
as bold/italic, hyperlinks, spacing, and bullets/numbering.
Also, there are multiple ways to use the same formatting
options. For example, one can use font style to character-
ize the shape of the objects. We hope this paper encourages
further exploration of integrating accessible daily interfaces
into text-based generation tasks, even beyond images.

Limitations. As we use multiple diffusion processes
and two-stage methods, our method can be multiple times
slower than the original process. Also, our way to produce
token maps relies on a thresholding parameter. More ad-
vanced segmentation methods like SAM [31] could be ex-
ploited to further improve the accuracy and robustness.

Acknowledgment. We thank Mia Tang, Aaron Hertz-
mann, Nupur Kumari, Gaurav Parmar, Ruihan Gao, and
Aniruddha Mahapatra for their helpful discussion and pa-
per reading. This work is partly supported by NSF grant
No. IIS-239076, as well as NSF grants No. IIS-1910132
and IIS-2213335.

References
[1] Maneesh Agrawala. Unpredictable black

boxes are terrible interfaces, March 2023.
https://magrawala.substack.com/p/unpredictable-black-
boxes-are-terrible. 3

[2] Omri Avrahami, Ohad Fried, and Dani Lischinski. Blended
latent diffusion. arXiv preprint arXiv:2206.02779, 2022. 2

[3] Omri Avrahami, Thomas Hayes, Oran Gafni, Sonal Gupta,
Yaniv Taigman, Devi Parikh, Dani Lischinski, Ohad Fried,
and Xi Yin. Spatext: Spatio-textual representation for con-
trollable image generation. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2023. 2

[4] Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat,
Jiaming Song, Karsten Kreis, Miika Aittala, Timo Aila,
Samuli Laine, Bryan Catanzaro, et al. ediffi: Text-to-image
diffusion models with an ensemble of expert denoisers. arXiv
preprint arXiv:2211.01324, 2022. 1, 2, 4

[5] Arpit Bansal, Hong-Min Chu, Avi Schwarzschild,
Soumyadip Sengupta, Micah Goldblum, Jonas Geip-
ing, and Tom Goldstein. Universal guidance for diffusion
models. arXiv preprint arXiv:2302.07121, 2023. 2, 5

[6] Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel.
Multidiffusion: Fusing diffusion paths for controlled image
generation. arXiv preprint arXiv:2302.08113, 2023. 2, 4

[7] Tim Brooks, Aleksander Holynski, and Alexei A Efros. In-
structpix2pix: Learning to follow image editing instructions.
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2023. 1, 2, 5, 7, 8, 9, 13, 29

[8] Minwoo Byeon, Beomhee Park, Haecheon Kim, Sungjun
Lee, Woonhyuk Baek, and Saehoon Kim. Coyo-
700m: Image-text pair dataset. https://github.com/
kakaobrain/coyo-dataset, 2022. 2

[9] Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xi-
aohu Qie, and Yinqiang Zheng. Masactrl: Tuning-free mu-
tual self-attention control for consistent image synthesis and
editing. arXiv preprint arXiv:2304.08465, 2023. 2

[10] Duygu Ceylan, Chun-Hao Huang, and Niloy J. Mi-
tra. Pix2video: Video editing using image diffusion.
arXiv:2303.12688, 2023. 2

[11] Huiwen Chang, Han Zhang, Jarred Barber, AJ Maschinot,
Jose Lezama, Lu Jiang, Ming-Hsuan Yang, Kevin Mur-
phy, William T Freeman, Michael Rubinstein, et al. Muse:
Text-to-image generation via masked generative transform-
ers. arXiv preprint arXiv:2301.00704, 2023. 2

[12] Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and
Daniel Cohen-Or. Attend-and-excite: Attention-based se-
mantic guidance for text-to-image diffusion models. arXiv
preprint arXiv:2301.13826, 2023. 2, 3, 4, 7, 8, 13

[13] Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune
Gwon, and Sungroh Yoon. Ilvr: Conditioning method for de-
noising diffusion probabilistic models. In IEEE International
Conference on Computer Vision (ICCV), 2021. 2

[14] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, edi-
tors, Conference on Neural Information Processing Systems

(NeurIPS), volume 34, pages 8780–8794. Curran Associates,
Inc., 2021. 5

[15] Ming Ding, Wendi Zheng, Wenyi Hong, and Jie Tang.
Cogview2: Faster and better text-to-image generation via hi-
erarchical transformers. arXiv preprint arXiv:2204.14217,
2022. 2

[16] Weixi Feng, Xuehai He, Tsu-Jui Fu, Varun Jampani, Ar-
jun Reddy Akula, Pradyumna Narayana, Sugato Basu,
Xin Eric Wang, and William Yang Wang. Training-
free structured diffusion guidance for compositional text-to-
image synthesis. In International Conference on Learning
Representations (ICLR), 2023. 2

[17] Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin,
Devi Parikh, and Yaniv Taigman. Make-a-scene: Scene-
based text-to-image generation with human priors. In Eu-
ropean Conference on Computer Vision (ECCV), pages 89–
106. Springer, 2022. 1, 2

[18] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-
age style transfer using convolutional neural networks. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2016. 2

[19] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,
Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt im-
age editing with cross attention control. arXiv preprint
arXiv:2208.01626, 2022. 1, 2, 4, 5, 7, 8, 13, 23, 25, 29

[20] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising dif-
fusion probabilistic models. Neural Information Processing
Systems (NeurIPS), 2020. 2, 5

[21] Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet,
Mohammad Norouzi, and Tim Salimans. Cascaded diffu-
sion models for high fidelity image generation. Journal of
Machine Learning Research, 23(47):1–33, 2022. 2

[22] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. In NeurIPS 2021 Workshop on Deep Generative
Models and Downstream Applications, 2021. 2

[23] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022. 5

[24] Jonathan Ho, Tim Salimans, Alexey Gritsenko, William
Chan, Mohammad Norouzi, and David J Fleet. Video diffu-
sion models. Conference on Neural Information Processing
Systems (NeurIPS), 2022. 2, 5

[25] Claudia-Lavinia Ignat, Luc André, and Gérald Oster. En-
hancing rich content wikis with real-time collaboration.
Concurrency and Computation: Practice and Experience,
33(8):e4110, 2021. 3

[26] Álvaro Barbero Jiménez. Mixture of diffusers for scene
composition and high resolution image generation. arXiv
preprint arXiv:2302.02412, 2023. 2

[27] Justin Johnson, Andrej Karpathy, and Li Fei-Fei. Densecap:
Fully convolutional localization networks for dense caption-
ing. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4565–4574, 2016. 3

[28] Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park,
Eli Shechtman, Sylvain Paris, and Taesung Park. Scaling
up gans for text-to-image synthesis. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2023. 1,
2

https://github.com/kakaobrain/coyo-dataset
https://github.com/kakaobrain/coyo-dataset

[29] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic align-
ments for generating image descriptions. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 3128–3137, 2015. 3

[30] Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Hui-
wen Chang, Tali Dekel, Inbar Mosseri, and Michal Irani.
Imagic: Text-based real image editing with diffusion mod-
els. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2023. 2

[31] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-
thing. arXiv preprint arXiv:2304.02643, 2023. 9

[32] Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli
Shechtman, and Jun-Yan Zhu. Multi-concept customization
of text-to-image diffusion. arXiv preprint arXiv:2212.04488,
2022. 2, 4

[33] Anat Levin, Dani Lischinski, and Yair Weiss. Colorization
using optimization. ACM SIGGRAPH, 2004. 2

[34] Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang,
and Furu Wei. Dit: Self-supervised pre-training for docu-
ment image transformer. In Proceedings of the 30th ACM
International Conference on Multimedia, pages 3530–3539,
2022. 2

[35] Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jian-
wei Yang, Jianfeng Gao, Chunyuan Li, and Yong Jae Lee.
Gligen: Open-set grounded text-to-image generation. In
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2023. 2

[36] Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van
Hardenberg. Peritext: A crdt for collaborative rich text edit-
ing. Proceedings of the ACM on Human-Computer Interac-
tion (PACMHCI), 2022. 3

[37] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tok-
makov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-
3: Zero-shot one image to 3d object. arXiv preprint
arXiv:2303.11328, 2023. 2

[38] Shaoteng Liu, Yuechen Zhang, Wenbo Li, Zhe Lin, and Jiaya
Jia. Video-p2p: Video editing with cross-attention control.
arXiv:2303.04761, 2023. 2

[39] Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala.
Deep photo style transfer. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017. 2

[40] Wan-Duo Kurt Ma, JP Lewis, W Bastiaan Kleijn, and
Thomas Leung. Directed diffusion: Direct control of ob-
ject placement through attention guidance. arXiv preprint
arXiv:2302.13153, 2023. 2, 4

[41] Yue Ma, Yingqing He, Xiaodong Cun, Xintao Wang, Ying
Shan, Xiu Li, and Qifeng Chen. Follow your pose:
Pose-guided text-to-video generation using pose-free videos,
2023. 2

[42] Elman Mansimov, Emilio Parisotto, Jimmy Lei Ba, and Rus-
lan Salakhutdinov. Generating images from captions with
attention. In International Conference on Learning Repre-
sentations (ICLR), 2016. 2

[43] Chenlin Meng, Yang Song, Jiaming Song, Jiajun Wu, Jun-
Yan Zhu, and Stefano Ermon. Sdedit: Image synthesis and

editing with stochastic differential equations. International
Conference on Learning Representations (ICLR), 2022. 2

[44] Yuxian Meng, Wei Wu, Fei Wang, Xiaoya Li, Ping Nie, Fan
Yin, Muyu Li, Qinghong Han, Xiaofei Sun, and Jiwei Li.
Glyce: Glyph-vectors for chinese character representations.
Neural Information Processing Systems (NeurIPS), 32, 2019.
2

[45] Alexander Quinn Nichol, Prafulla Dhariwal, Aditya Ramesh,
Pranav Shyam, Pamela Mishkin, Bob Mcgrew, Ilya
Sutskever, and Mark Chen. Glide: Towards photorealis-
tic image generation and editing with text-guided diffusion
models. International Conference on Machine Learning
(ICML), pages 16784–16804, 2022. 2

[46] Gaurav Parmar, Krishna Kumar Singh, Richard Zhang, Yijun
Li, Jingwan Lu, and Jun-Yan Zhu. Zero-shot image-to-image
translation. arXiv preprint arXiv:2302.03027, 2023. 2

[47] Or Patashnik, Daniel Garibi, Idan Azuri, Hadar Averbuch-
Elor, and Daniel Cohen-Or. Localizing object-level shape
variations with text-to-image diffusion models. arXiv
preprint arXiv:2303.11306, 2023. 2, 4

[48] Quynh Phung, Songwei Ge, and Jia-Bin Huang. Grounded
text-to-image synthesis with attention refocusing. arXiv
preprint arXiv:2306.05427, 2023. 2

[49] Chenyang Qi, Xiaodong Cun, Yong Zhang, Chenyang Lei,
Xintao Wang, Ying Shan, and Qifeng Chen. Fatezero: Fus-
ing attentions for zero-shot text-based video editing, 2023.
2

[50] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning
(ICML), pages 8748–8763. PMLR, 2021. 3, 6

[51] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gen-
eration with clip latents. arXiv preprint arXiv:2204.06125,
2022. 2

[52] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray,
Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
Zero-shot text-to-image generation. In International Confer-
ence on Machine Learning (ICML), pages 8821–8831, 2021.
1, 2

[53] E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley. Color
transfer between images. IEEE Computer Graphics and Ap-
plications, 21(5):34–41, 2001. 2

[54] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2022. 1,
2, 5, 26

[55] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2023. 2

[56] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed

Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi,
Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J
Fleet, and Mohammad Norouzi. Photorealistic text-to-image
diffusion models with deep language understanding, 2022.
1, 2, 26

[57] Arnaud Sahuguet and Fabien Azavant. Wysiwyg web wrap-
per factory (w4f), 1999. 3

[58] Vishnu Sarukkai, Linden Li, Arden Ma, Christopher R’e,
and Kayvon Fatahalian. Collage diffusion. ArXiv,
abs/2303.00262, 2023. 2

[59] Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger,
and Timo Aila. Stylegan-t: Unlocking the power of gans
for fast large-scale text-to-image synthesis. arXiv preprint
arXiv:2301.09515, 2023. 2

[60] Christoph Schuhmann, Romain Beaumont, Richard Vencu,
Cade Gordon, Ross Wightman, Mehdi Cherti, Theo
Coombes, Aarush Katta, Clayton Mullis, Mitchell Worts-
man, et al. Laion-5b: An open large-scale dataset for training
next generation image-text models. Conference on Neural
Information Processing Systems (NeurIPS), 2022. 2

[61] Jianbo Shi and J. Malik. Normalized cuts and image segmen-
tation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8):888–905, 2000. 4

[62] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denois-
ing diffusion implicit models. In International Conference
on Learning Representations (ICLR), 2021. 2

[63] Zijun Sun, Xiaoya Li, Xiaofei Sun, Yuxian Meng, Xiang
Ao, Qing He, Fei Wu, and Jiwei Li. Chinesebert: Chinese
pretraining enhanced by glyph and pinyin information. An-
nual Meeting of the Association for Computational Linguis-
tics (ACL), 2021. 2

[64] Yu-Wing Tai, Jiaya Jia, and Chi-Keung Tang. Local
color transfer via probabilistic segmentation by expectation-
maximization. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), volume 1, pages 747–754 vol.
1, 2005. 2

[65] Raphael Tang, Akshat Pandey, Zhiying Jiang, Gefei Yang,
K. V. S. Manoj Kumar, Jimmy Lin, and Ferhan Ture. What
the daam: Interpreting stable diffusion using cross attention.
ArXiv, abs/2210.04885, 2022. 4

[66] Hung-Yu Tseng, Qinbo Li, Changil Kim, Suhib Alsisan, Jia-
Bin Huang, and Johannes Kopf. Consistent view synthesis
with pose-guided diffusion models. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2023. 2

[67] Narek Tumanyan, Michal Geyer, Shai Bagon, and
Tali Dekel. Plug-and-play diffusion features for text-
driven image-to-image translation. arXiv preprint
arXiv:2211.12572, 2022. 4, 5

[68] Colorado State University. tutorial: Rich text format (rtf)
from microsoft word - the access project - colorado state uni-
versity, 2012-07-08. 1

[69] Ulrike Von Luxburg. A tutorial on spectral clustering. Statis-
tics and computing, 17:395–416, 2007. 4

[70] Daniel Watson, William Chan, Ricardo Martin-Brualla,
Jonathan Ho, Andrea Tagliasacchi, and Mohammad
Norouzi. Novel view synthesis with diffusion models, 2022.
2

[71] Ian H Witten, David Bainbridge, and David M Nichols. How
to build a digital library. Morgan Kaufmann, 2009. 1

[72] Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Weixian Lei,
Yuchao Gu, Wynne Hsu, Ying Shan, Xiaohu Qie, and
Mike Zheng Shou. Tune-a-video: One-shot tuning of image
diffusion models for text-to-video generation. arXiv preprint
arXiv:2212.11565, 2022. 2

[73] Guangxuan Xiao, Tianwei Yin, William T Freeman, Frédo
Durand, and Song Han. Fastcomposer: Tuning-free multi-
subject image generation with localized attention. arXiv
preprint arXiv:2305.10431, 2023. 2

[74] Li Xu, Qiong Yan, and Jiaya Jia. A sparse control model
for image and video editing. ACM Transactions on Graphics
(TOG), 32:1 – 10, 2013. 2

[75] Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei,
and Ming Zhou. Layoutlm: Pre-training of text and layout
for document image understanding. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1192–1200, 2020. 2

[76] Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gun-
jan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yin-
fei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive
models for content-rich text-to-image generation. Transac-
tions on Machine Learning Research, 2022. 2

[77] Lvmin Zhang and Maneesh Agrawala. Adding conditional
control to text-to-image diffusion models. arXiv preprint
arXiv:2302.05543, 2023. 1, 2

[78] Qinsheng Zhang, Jiaming Song, Xun Huang, Yongxin Chen,
and Ming-Yu Liu. Diffcollage: Parallel generation of large
content with diffusion models. IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2023. 2

[79] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful
image colorization. In European Conference on Computer
Vision (ECCV), 2016. 2

[80] Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng,
Angela S Lin, Tianhe Yu, and Alexei A Efros. Real-time
user-guided image colorization with learned deep priors.
ACM Transactions on Graphics (TOG), 9(4), 2017. 2

[81] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In IEEE International Con-
ference on Computer Vision (ICCV), Oct 2017. 2

[82] Xiaojin Zhu, Andrew B Goldberg, Mohamed Eldawy,
Charles R Dyer, and Bradley Strock. A text-to-picture syn-
thesis system for augmenting communication. In AAAI Con-
ference on Artificial Intelligence, 2007. 2

Expressive Text-to-Image Generation with Rich Text Appendix
In this appendix, we provide additional experimental results and details. In section A, we show the images generated by

our model, Attend-and-Excite [12], Prompt-to-Prompt [19], and InstructPix2Pix [7] with various RGB colors, local styles,
and detailed descriptions via footnotes. In section B, we provide additional details on the implementation and evaluation.

A. Additional Results
In this section, we first show additional results of rich-text-to-image generation on complex scene synthesis (Figures 15,

16, and 17), precise color rendering (Figures 18, 19, and 20), local style control (Figures 21 and 22), and explicit token re-
weighting (Figure 23, 24, and 25). We also show an ablation study of the averaging and maximizing operations across tokens
to obtain token maps in Figure 26. We present additional results compared with a composition-based baseline in Figure 27.
Last, we show an ablation of the hyperparameters of our baseline method InstructPix2Pix [7] on the local style generation
application in Figure 28.

Stable Diffusion (Plain-Text) Stable Diffusion (Full-Text) Ours

Attend-and-Excite Prompt-to-Prompt InstructPix2Pix

A car1 driving on the road. A bicycle2 nearby a tree3. A cityscape4 in the background.
1A sleek sports car gleams on the road in the sunlight, with its aerodynamic curves and polished finish catching the light. 2A bicycle with rusted frame and worn tires.
3A dead tree with a few red apples on it. 4A bustling Hongkong cityscape with towering skyscrapers.

Figure 13. Additional results of the footnote. We show the generation from a complex description of a garden. Note that all the methods
except for ours fail to generate accurate details of the mansion and fountain as described.

A lush garden1 with a fountain2. A grand mansion3 in the background.
1A garden is full of vibrant colors with a variety of flowers.
2A fountain made of white marble with multiple tiers. The tiers are intricately carved with various designs.
3An impressive two-story mansion with a royal exterior, white columns, and tile-made roof. The mansion has numerous windows, each adorned with white curtains.

Stable Diffusion (Plain-Text) Stable Diffusion (Full-Text) Ours

Attend-and-Excite Prompt-to-Prompt InstructPix2Pix

Figure 14. Additional results of the footnote. We show the generation from a complex description of a garden. Note that all the methods
except for ours fail to generate accurate details of the mansion and fountain as described.

Stable Diffusion (Plain-Text) Stable Diffusion (Full-Text) Ours

Attend-and-Excite Prompt-to-Prompt InstructPix2Pix

A small chair1 sits in front of a table2 on the wooden floor. There is a bookshelf3 nearby the window4.
1A black leather office chair with a high backrest and adjustable arms.
2A large wooden desk with a stack of books on top of it.
3A bookshelf filled with colorful books and binders.
4A window overlooks a stunning natural landscape of snow mountains.

Figure 15. Additional results of the footnote. We show the generation from a complex description of an office. Note that all the methods
except ours fail to generate accurate window overlooks and colorful binders as described.

Red

(a)
Vegetable

(b)
Flower

(c)
Shirts

PinkYellow BlueGreen BlackCyan OrangePurple

(d)
Toy

(e)
Beverage

Red PinkYellow BlueGreen BlackCyan OrangePurple Red PinkYellow BlueGreen BlackCyan OrangePurple

Ours

Prompt-to-Promp InstructPix2Pix

(a)

(b)

(c)

(d)

(e)

Figure 16. Additional results of the font color. We show the generation of different objects with colors from the Common category.
Prompt-to-Prompt has a large failure rate of respecting the given color name, while InstructPix2Pix tends to color the background and
irrelevant objects.

(a)
Vegetable

(b)
Flower

(c)
Shirts

(d)
Toy

(e)
Beverage

Ours

Prompt-to-Prompt InstructPix2Pix

(a)

(b)

(c)

(d)

(e)

Chocolate Orchid PurpleSalmon Red Gold YellowSpring Green Navy BlueFloral White Tomato OrangeIndigo Purple

Chocolate Orchid PurpleSalmon Red Gold YellowSpring Green Navy BlueFloral White Tomato OrangeIndigo Purple Chocolate Orchid PurpleSalmon Red Gold YellowSpring Green Navy BlueFloral White Tomato OrangeIndigo Purple

Figure 17. Additional results of the font color. We show the generation of different objects with colors from the HTML category. Both
methods fail to generate the precise color, and InstructPix2Pix tends to color the background and irrelevant objects.

(a)
Vegetable

(b)
Flower

(c)
Shirts

(d)
Toy

(e)
Beverage

Ours

Prompt-to-Prompt InstructPix2Pix

(a)

(b)

(c)

(d)

(e)

(25, 75, 226) (116, 6, 93)(39, 126, 109) (105, 28, 226)(99, 219, 32) (219, 100, 27)(222, 80, 195) (208, 211, 9)(211, 22, 52)

(25, 75, 226) (116, 6, 93)(39, 126, 109) (105, 28, 226)(99, 219, 32) (219, 100, 27)(222, 80, 195) (208, 211, 9)(211, 22, 52)

(25, 75, 226) (116, 6, 93)(39, 126, 109) (105, 28, 226)(99, 219, 32) (219, 100, 27)(222, 80, 195) (208, 211, 9)(211, 22, 52)

Figure 18. Additional results of the font color. We show the generation of different objects with colors from the RGB category. Both
baseline methods cannot interpret the RGB values correctly.

snow
mountain

garden

(a) Claude
Monet

(b) Ukiyo-e

(c) Cyber
Punk

(d) Andy
Warhol

(e) Vincent
Van Gogh

(f) Pixel
Art

(g) Cubism

(a) Claude
Monet

(b) Ukiyo-e (c) Cyber
Punk

(d) Andy
Warhol

(e) Vincent
Van Gogh

(f) Pixel
Art

(g) Cubism

snow
mountain

garden

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(a) (b) (c) (d) (e) (f) (g) (a) (b) (c) (d) (e) (f) (g)

InstructPix2PixPrompt-to-Prompt

Ours

Figure 19. Additional results of the font style. We show images generated with different style combinations and prompt “a beautiful
garden in front of a snow mountain”. Each row contains “snow mountain” in 7 styles, and each column contains “garden” in 7 styles. Only
our method can generate distinct styles for both objects.

sky-
scraper

pond

(a) Claude
Monet

(b) Ukiyo-e

(c) Cyber
Punk

(d) Andy
Warhol

(e) Vincent
Van Gogh

(f) Pixel
Art

(g) Cubism

(a) Claude
Monet

(b) Ukiyo-e (c) Cyber
Punk

(d) Andy
Warhol

(e) Vincent
Van Gogh

(f) Pixel
Art

(g) Cubism

skyscraper

pond

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(a) (b) (c) (d) (e) (f) (g) (a) (b) (c) (d) (e) (f) (g)

InstructPix2Pix Prompt-to-Prompt

Ours

Figure 20. Additional results of the font style. We show images generated with different style combinations and prompt “a small pond
surrounded by skyscraper”. Each row contains “skyscraper” in 7 styles, and each column contains “pond” in 7 styles. Only our method
can generate distinct styles for both objects.

Repeating: A pizza with pineapples, pepperonis, and mushrooms, mushrooms, mushrooms.

Parenthesis: A pizza with pineapples, pepperonis, and ((mushrooms)).

Prompt-to-Prompt: A pizza with pineapples, pepperonis, and mushrooms.

Ours: A pizza with pineapples, pepperonis, and mushrooms.

1× 3× 5× 7× 9× 11× 13× 15× 17× 19×

Figure 21. Additional results of font sizes. We use a token weight evenly sampled from 1 to 20 for the word ‘mushrooms’ with our
method and Prompt-to-Prompt. For parenthesis and repeating, we show results by repeating the word ‘mushrooms’ and adding parentheses
to the word ‘mushrooms’ for 1 to 10 times. Prompt-to-Prompt suffers from generating artifacts. Heuristic methods are not effective.

Repeating: A pizza with pineapples, pineapples, pineapples, pepperonis, and mushrooms.

Parenthesis: A pizza with ((pineapples)), pepperonis, and mushrooms.

Prompt-to-Prompt: A pizza with pineapples, pepperonis, and mushrooms.

Ours: A pizza with pineapples, pepperonis, and mushrooms.

1× 3× 5× 7× 9× 11× 13× 15× 17× 19×

Figure 22. Additional results of font sizes. We use a token weight evenly sampled from 1 to 20 for the word ‘pineapples’ with our method
and Prompt-to-Prompt. For parenthesis and repeating, we show results by repeating the word ‘pineapples’ and adding parentheses to the
word ‘pineapples’ for 1 to 10 times. Prompt-to-Prompt suffers from generating artifacts. Heuristic methods are not effective.

Repeating: A pizza with pineapples, pepperonis, pepperonis, pepperonis, and mushrooms.

Parenthesis: A pizza with pineapples, ((pepperonis)), and mushrooms.

Prompt-to-Prompt: A pizza with pineapples, pepperonis, and mushrooms.

Ours: A pizza with pineapples, pepperonis, and mushrooms.

1× 3× 5× 7× 9× 11× 13× 15× 17× 19×

Figure 23. Additional results of font sizes. We use a token weight evenly sampled from 1 to 20 for the word ‘pepperonis’ with our method
and Prompt-to-Prompt. For parenthesis and repeating, we show results by repeating the word ‘pepperonis’ and adding parentheses to the
word ‘pepperonis’ for 1 to 10 times. Prompt-to-Prompt suffers from generating artifacts. Heuristic methods are not effective.

Prompt-to-
Prompt

Ours

a cat (Pixel Art) sitting on a meadow (Van Gogh).

Instruct
Pix2Pix

Prompt-to-
Prompt

Ours

A stream train (Ukiyo-e) on the mountain side (Claude Monet).

Instruct
Pix2Pix

Figure 24. Comparison with a simple composed-based method using different random seeds. Since the methods like Prompt-to-
Prompt [19] cannot generate multiple styles on a single image, one simple idea to fix this is to apply the methods on two regions separately
and compose them using the token maps. However, we show that this leads to sharp changes and artifacts at the boundary areas.

Text

skyscraper

Image

InstructPix2Pix Step 1

0.5

Prompt-to-Prompt

No Style

1.5 3.5 5.5 7.5

1.5

3.5

5.5

7.5

9.5

Ours

Text

skyscraper

Image

0.5 1.5 3.5 5.5 7.5

1.5

3.5

5.5

7.5

9.5

Prompt: “A camel
(Cyber Punk, futuristic)
in the dessert (Vincent
Van Gogh).”

InstructPix2Pix Step 2

Figure 25. Ablation of the classifier free guidance of InstructPix2Pix. We show that InstruxtPix2Pix fails to generate both styles with
different image and text classifier-free guidance (cfg) weights. When image-cfg is low, the desert is lost after the first editing. We use
image-cfg= 1.5 and text-cfg= 7.5 in our experiment.

0.26 0.27
0

0.1

CLIP Similarity

D
is

ta
nc

e
to

Ta
rg

et
C

ol
or

(↓
)

Minimal Distance

0.26 0.27

0.4

0.5

0.6

CLIP Similarity

Mean Distance

Figure 26. Ablation on the hyperparameter λ in Equation (7). We report the trade-off of CLIP similarity and color distance achieved
by sweeping the strength of color optimization λ.

Prompt-to-Prompt Improved Prompt-to-Prompt Ours

a garden (Claude Monet) in front of a snow mountain (Ukiyo-e)

No Style

Figure 27. Improved Prompt-to-Prompt. Further constraining the attention maps for styles does not resolve the mixed style issue.

Ablation of the color guidance weight. Changing the guidance strength λ allows us to control the trade-off between fidelity
and color precision. To evaluate the fidelity of the image, we compute the CLIP score between the generation and the plain
text prompt. We plot the CLIP similarity vs. color distance in Figure 26 by sweeping λ from 0 to 20. Increasing the strength
always reduces the CLIP similarity as details are removed to satisfy the color objective. We find that larger λ first reduces
and then increases the distances due to the optimization divergence.

Constrained Prompt-to-Prompt. The original Attention Refinement proposed in Prompt-to-Prompt [19] does not apply
any constraint to newly added tokens’ attention maps, which may be the reason that it fails with generating distinct styles.
Therefore, we attempt to improve Prompt-to-Prompt by injecting the cross-attention maps for the newly added style tokens.
For example, in Figure 27, we use the cross attention map of “garden” for the style “Claude Monet”. However, the method
still produces a uniform style.

Human Evaluation We conduct a user study on crowdsourcing platforms. We show human annotators a pair of generated
images and ask them which image more accurately expresses the reference color, artistic styles, or supplementary descrip-
tions. To compare ours with each baseline, we show 135 font color pairs, 167 font style pairs, and 21 footnote pairs to three
individuals and receive 1938 responses. As shown in the table below, our method is chosen more than 80% of the time
over both baselines for producing more precise color and content given the long prompt and more than 65% of the time for
rendering more accurate artistic styles. We will include a similar study at a larger scale in our revision.

Table 1. Human evaluation results.
Color Style Footnote

Ours vs. Prompt-to-Prompt 88.2% 65.2% 84.1%
Ours vs. InstructPix2Pix 80.7% 69.8% 87.3%

B. Additional Details
This section details our quantitative evaluation of the font style and font color experiments.

Font style evaluation. To compute the local CLIP scores at each local region to evaluate the stylization quality, we need
to create test prompts with multiple objects and styles. We use seven popular styles that people use to describe the artistic
styles of the generation, as listed below. Note that for each style, to achieve the best quality, we also include complementary
information like the name of famous artists in addition to the style.

styles = [
’Claud Monet, impressionism, oil on canvas’,
’Ukiyoe’,
’Cyber Punk, futuristic’,
’Pop Art, masterpiece, Andy Warhol’,
’Vincent Van Gogh’,
’Pixel Art, 8 bits, 16 bits’,
’Abstract Cubism, Pablo Picasso’

]

We also manually create a set of prompts, where each contains a combination of two objects, for stylization, resulting in 420
prompts in total. We generally confirm that Stable Diffusion [54] can generate the correct combination, as our goal is not
to evaluate the compositionality of the generation as in DrawBench [56]. The prompts and the object tokens used for our
method are listed below.

candidate_prompts = [
’A garden with a mountain in the distance.’: [’garden’, ’mountain’],
’A fountain in front of an castle.’: [’fountain’, ’castle’],
’A cat sitting on a meadow.’: [’cat’, ’meadow’],
’A lighthouse among the turbulent waves in the night.’: [’lighthouse’, ’turbulent waves’],
’A stream train on the mountain side.’: [’stream train’, ’mountain side’],
’A cactus standing in the desert.’: [’cactus’, ’desert’],
’A dog sitting on a beach.’: [’dog’, ’beach’],
’A solitary rowboat tethered on a serene pond.’: [’rowboat’, ’pond’],
’A house on a rocky mountain.’: [’house’, ’mountain’],
’A rustic windmill on a grassy hill.’: [’rustic’, ’hill’],

]

Font color evaluation. To evaluate precise color generation capacity, we create a set of prompts with colored objects. We
divide the potential colors into three levels according to the difficulty of text-to-image generation models to depend on. The
easy-level color set contains 17 basic color names that these models generally understand. The complete set is as below.

COLORS_easy = {
’brown’: [165, 42, 42],
’red’: [255, 0, 0],
’pink’: [253, 108, 158],
’orange’: [255, 165, 0],
’yellow’: [255, 255, 0],
’purple’: [128, 0, 128],
’green’: [0, 128, 0],
’blue’: [0, 0, 255],
’white’: [255, 255, 255],
’gray’: [128, 128, 128],
’black’: [0, 0, 0],
’crimson’: [220, 20, 60],
’maroon’: [128, 0, 0],
’cyan’: [0, 255, 255],

’azure’: [240, 255, 255],
’turquoise’: [64, 224, 208],
’magenta’: [255, 0, 255],

}

The medium-level set contain color names that are selected from the HTML color names 2. These colors are also standard
to use for website design. However, their names are less often occurring in the image captions, making interpretation by
a text-to-image model challenging. To address this issue, we also append the coarse color category when possible, e.g.,
“Chocolate” to “Chocolate brown”. The complete list is below.

COLORS_medium = {
’Fire Brick red’: [178, 34, 34],
’Salmon red’: [250, 128, 114],
’Coral orange’: [255, 127, 80],
’Tomato orange’: [255, 99, 71],
’Peach Puff orange’: [255, 218, 185],
’Moccasin orange’: [255, 228, 181],
’Goldenrod yellow’: [218, 165, 32],
’Olive yellow’: [128, 128, 0],
’Gold yellow’: [255, 215, 0],
’Lavender purple’: [230, 230, 250],
’Indigo purple’: [75, 0, 130],
’Thistle purple’: [216, 191, 216],
’Plum purple’: [221, 160, 221],
’Violet purple’: [238, 130, 238],
’Orchid purple’: [218, 112, 214],
’Chartreuse green’: [127, 255, 0],
’Lawn green’: [124, 252, 0],
’Lime green’: [50, 205, 50],
’Forest green’: [34, 139, 34],
’Spring green’: [0, 255, 127],
’Sea green’: [46, 139, 87],
’Sky blue’: [135, 206, 235],
’Dodger blue’: [30, 144, 255],
’Steel blue’: [70, 130, 180],
’Navy blue’: [0, 0, 128],
’Slate blue’: [106, 90, 205],
’Wheat brown’: [245, 222, 179],
’Tan brown’: [210, 180, 140],
’Peru brown’: [205, 133, 63],
’Chocolate brown’: [210, 105, 30],
’Sienna brown’: [160, 82, 4],
’Floral White’: [255, 250, 240],
’Honeydew White’: [240, 255, 240],

}

The hard-level set contains 50 randomly sampled RGB triplets as we aim to generate objects with arbitrary colors indicated
in rich texts. For example, the color can be selected by an RGB slider.

COLORS_hard = {
’color of RGB values [68, 17, 237]’: [68, 17, 237],
’color of RGB values [173, 99, 227]’: [173, 99, 227],
’color of RGB values [48, 131, 172]’: [48, 131, 172],

2https://simple.wikipedia.org/wiki/Web_color

https://simple.wikipedia.org/wiki/Web_color

’color of RGB values [198, 234, 45]’: [198, 234, 45],
’color of RGB values [182, 53, 74]’: [182, 53, 74],
’color of RGB values [29, 139, 118]’: [29, 139, 118],
’color of RGB values [105, 96, 172]’: [105, 96, 172],
’color of RGB values [216, 118, 105]’: [216, 118, 105],
’color of RGB values [88, 119, 37]’: [88, 119, 37],
’color of RGB values [189, 132, 98]’: [189, 132, 98],
’color of RGB values [78, 174, 11]’: [78, 174, 11],
’color of RGB values [39, 126, 109]’: [39, 126, 109],
’color of RGB values [236, 81, 34]’: [236, 81, 34],
’color of RGB values [157, 69, 64]’: [157, 69, 64],
’color of RGB values [67, 192, 60]’: [67, 192, 60],
’color of RGB values [181, 57, 181]’: [181, 57, 181],
’color of RGB values [71, 240, 139]’: [71, 240, 139],
’color of RGB values [34, 153, 226]’: [34, 153, 226],
’color of RGB values [47, 221, 120]’: [47, 221, 120],
’color of RGB values [219, 100, 27]’: [219, 100, 27],
’color of RGB values [228, 168, 120]’: [228, 168, 120],
’color of RGB values [195, 31, 8]’: [195, 31, 8],
’color of RGB values [84, 142, 64]’: [84, 142, 64],
’color of RGB values [104, 120, 31]’: [104, 120, 31],
’color of RGB values [240, 209, 78]’: [240, 209, 78],
’color of RGB values [38, 175, 96]’: [38, 175, 96],
’color of RGB values [116, 233, 180]’: [116, 233, 180],
’color of RGB values [205, 196, 126]’: [205, 196, 126],
’color of RGB values [56, 107, 26]’: [56, 107, 26],
’color of RGB values [200, 55, 100]’: [200, 55, 100],
’color of RGB values [35, 21, 185]’: [35, 21, 185],
’color of RGB values [77, 26, 73]’: [77, 26, 73],
’color of RGB values [216, 185, 14]’: [216, 185, 14],
’color of RGB values [53, 21, 50]’: [53, 21, 50],
’color of RGB values [222, 80, 195]’: [222, 80, 195],
’color of RGB values [103, 168, 84]’: [103, 168, 84],
’color of RGB values [57, 51, 218]’: [57, 51, 218],
’color of RGB values [143, 77, 162]’: [143, 77, 162],
’color of RGB values [25, 75, 226]’: [25, 75, 226],
’color of RGB values [99, 219, 32]’: [99, 219, 32],
’color of RGB values [211, 22, 52]’: [211, 22, 52],
’color of RGB values [162, 239, 198]’: [162, 239, 198],
’color of RGB values [40, 226, 144]’: [40, 226, 144],
’color of RGB values [208, 211, 9]’: [208, 211, 9],
’color of RGB values [231, 121, 82]’: [231, 121, 82],
’color of RGB values [108, 105, 52]’: [108, 105, 52],
’color of RGB values [105, 28, 226]’: [105, 28, 226],
’color of RGB values [31, 94, 190]’: [31, 94, 190],
’color of RGB values [116, 6, 93]’: [116, 6, 93],
’color of RGB values [61, 82, 239]’: [61, 82, 239],

}

To write a complete prompt, we create a list of 12 objects and simple prompts containing them as below. The objects
would naturally exhibit different colors in practice, such as “flower”, “gem”, and “house”.

candidate_prompts = [
’a man wearing a shirt’: ’shirt’,

’a woman wearing pants’: ’pants’,
’a car in the street’: ’car’,
’a basket of fruit’: ’fruit’,
’a bowl of vegetable’: ’vegetable’,
’a flower in a vase’: ’flower’,
’a bottle of beverage on the table’: ’bottle beverage’,
’a plant in the garden’: ’plant’,
’a candy on the table’: ’candy’,
’a toy on the floor’: ’toy’,
’a gem on the ground’: ’gem’,
’a church with beautiful landscape in the background’: ’church’,

]

Baseline. We compare our method quantitatively with two strong baselines, Prompt-to-Prompt [19] and InstructPix2Pix [7].
The prompt refinement application of Prompt-to-Prompt allows adding new tokens to the prompt. We use plain text as the
base prompt and add color or style to create the modified prompt. InstructPix2Pix [7] allows using instructions to edit the
image. We use the image generated by the plain text as the input image and create the instructions using templates “turn the
[object] into the style of [style],” or “make the color of [object] to be [color]”. For the stylization experiment, we apply two
instructions in both parallel (InstructPix2Pix-para) and sequence (InstructPix2Pix-seq). We tune both methods on a separate
set of manually created prompts to find the best hyperparameters. In contrast, it is worth noting that our method does not
require hyperparameter tuning.

Running time. The inference time of our models depends on the number of attributes added to the rich text since we
implement each attribute with an independent diffusion process. In practice, we always use a batch size of 1 to make the
code compatible with low-resource devices. In our experiments on an NVIDIA RTX A6000 GPU, each sampling based on
the plain text takes around 5.06 seconds, while sampling an image with two styles takes around 8.07 seconds, and sampling
an image with our color optimization takes around 13.14 seconds.

